Theory Thévenin Equivalent

Approach #1
1. Calculate V_{oc} and I_{sc}
2. Shorten a, b, the current between a and b
3. Voltage between a and b when a, b is open

Approach #2
1. Calculate either V_{oc} or I_{sc}
2. Calculate R_{th} directly
Norton’s Theorem

Linear two-terminal circuit can be replaced by an equivalent circuit composed of a current source and parallel resistor

\[i_N = \frac{v_{Th}}{R_{Th}} \]

Current through output with short circuit

\[R_N = R_{Th} \]

Resistance at terminals with all circuit sources set to zero

Thévenin and Norton Equivalency

Power Transfer

In many situations, we want to maximize power transfer to the load

\[P_L = i_Lv_L = \frac{v_s^2 R_L}{(R_s + R_L)^2} \]

\[P_L = i_L^2 V_L, \quad I_L = \frac{V_L}{R_s + R_L} \]

Maximum power when \(R_L = R_s \)

\[P_{L(max)} = \frac{v_s^2 R_L}{(R_s + R_L)^2} = \frac{v_s^2}{4R_s} \]

Load Resistance = \(R_{th} \)

\[R_L = R_{th} \]

\[P_{max} = \frac{V_s^2}{4R_{th}} \]
Thevenin Equivalent Circuit

![Thevenin Circuit Diagram]

Approach #1 both V_{oc} and I_{sc}
- **open circuit** $V_{th} = V_{oc}$
- **short circuit** $R_{th} = \frac{V_{oc}}{I_{sc}}$

Approach #2
- **step 1** either V_{oc} or I_{sc}
- **step 2** R_{th} (shorten the voltage source, open the current source)

Norton Equivalent Circuit

- **Step 1** Thevenin Analysis
- **Step 2** $V_{th} = \frac{V_{th}}{R_{th}} \rightarrow I \left(\frac{1}{R_{th}} \right)$

Maximum Power Transfer

- **Step 1** Thevenin Analysis
\[R_L = R_{th} \]

\[P_{RL} = \left(\frac{V_{th}}{2R_{th}} \right)^2 \cdot R_L = \frac{V_{th}^2}{4R_{th}} \]
Exercise 3-14 The bridge circuit of Fig. E3-14 is connected to a load R_L between terminals (a, b). Choose R_L such that maximum power is delivered to R_L. If $R = 3$ Ω, how much power is delivered to R_L?

$$P_L = \frac{V^2}{R_L}$$

Solution: We need to remove R_L and then determine the Thévenin equivalent circuit at terminals (a, b).

Open-circuit voltage:

The two branches are balanced (contain same total resistance of $3R$). Hence, identical currents will flow, namely

$$I_1 = I_2 = \frac{24}{3R} = \frac{8}{R}.$$

$$V_{oc} = V_a - V_b = 2RI_1 - RI_2 = RI_1 = R \frac{8}{R} = 8 \text{ V}.$$

To find R_{TB}, we replace the source with a short circuit:

Fawwaz T. Ulaby, Michel M. Mahabir and Cynthia M. Furse Circuit Analysis and Design
Hence,

and the Thévenin circuit is

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse *Circuit Analysis and Design*
For maximum power transfer with \(R = 3 \ \Omega \), \(R_L \) should be

\[
R_L = \frac{4R}{3} = \frac{4 \times 3}{3} = 4 \ \Omega,
\]

and

\[
P_{\text{max}} = \frac{v^2}{4R_L} = \frac{8^2}{4 \times 4} = 4 \ \text{W}.
\]
Homework
Tuesday, July 23, 2019 1:37 PM

Problem 3.81 What value of the load resistor R_L will extract the maximum amount of power from the circuit in Fig. P3.81, and how much power will that be?

\[
\begin{align*}
\{ & \frac{V_a}{3} + \frac{V_a - V_b}{4} = 0 \Rightarrow 5V_a - 3V_b = 36 \\
& \frac{V_b - V_c}{3} + \frac{V_c + V_b}{6} = 0 \Rightarrow 6V_b - 6V_c + 3V_c + 4V_b = 0 \Rightarrow 13V_b = 6V_c \\
& \Rightarrow 5\left(\frac{V_b}{2} - V_c\right) - 3V_c = 3b \Rightarrow 65\frac{V_b}{2} - 18V_c = 21b \\
& \Rightarrow V_c = \frac{36}{27}V \Rightarrow \frac{V_c}{2} = \frac{8}{9}V \\
\} \\
\text{Problem 3.81: Circuit for Problem 3.81.}
\end{align*}
\]

Solution: We start by obtaining the Thévenin equivalent circuit at terminals (a,b), as if R_L were not there. We first find V_{oc}:

\[
\begin{align*}
\frac{V}{6} - 3 + \frac{V}{12} = 0 \\
V = 12V.
\end{align*}
\]

Hence,

\[
\begin{align*}
\text{Voltage division gives:} \\
V_{Th} = V_{oc} = \left(\frac{8}{4+8}\right)V = \frac{8}{12} \times 12 = 8V.
\end{align*}
\]

Next, we suppress the current source to find R_{Th}:

\[
\begin{align*}
R_{Th} = 10.44 \Omega.
\end{align*}
\]

Equivalent circuit:

\[
\begin{align*}
\text{For maximum power transfer to } R_L, \\
R_L = R_{Th} = 10.44 \Omega \\
I = \frac{8}{2 \times 10.44} = 0.38 \text{ A} \\
P_{\text{max}} = I^2 R_L = (0.38)^2 \times 10.44 = 1.53 \text{ W}.
\end{align*}
\]

All rights reserved. Do not reproduce or distribute. ©2013 National Technology and Science Press
Problem 3.82 For the circuit in Fig. P3.82, choose the value of R_L so that the power dissipated in it is a maximum.

\[
R_{\text{th}} = \frac{2 + 6}{1/(4 + 8)}
\]

\[
= \frac{8}{8/12} = 4.8 \, \text{k}\Omega
\]

Solution: We need to find the Thévenin equivalent circuit at terminals (a, b), as if R_L were not present.

The current source will divide among I_1 and I_2 such that

\[
(4 + 2)I_1 = (8 + 6)I_2 \Rightarrow \frac{I_1}{I_2} = \frac{14}{6} = \frac{7}{3}
\]

Also, $I_1 + I_2 = 2$ mA

The solution yields:

\[
I_1 = 1.4 \, \text{mA}, \quad I_2 = 0.6 \, \text{mA},
\]

\[
V_{oc} = (-4I_1 + 8I_2) \times 10^3
\]

\[
= -4 \times 1.4 + 8 \times 0.6 = -0.8 \, \text{V}.
\]

To find R_{th}, we suppress the current source and simplify the circuit:

\[
R_{\text{th}} = 8 \, \text{k}\Omega \parallel 12 \, \text{k}\Omega = 4.8 \, \text{k}\Omega
\]

Hence, R_L should be 4.8 kΩ for maximum power transfer to it.

All rights reserved. Do not reproduce or distribute. ©2013 National Technology and Science Press
Summary

Chapter 3 Relationships

<table>
<thead>
<tr>
<th>Method</th>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node-voltage method</td>
<td>$\sum \text{of all current leaving a node} = 0$</td>
<td>[current entering a node is (\rightarrow)]</td>
</tr>
<tr>
<td>Mesh-current method</td>
<td>$\sum \text{of all voltages around a loop} = 0$</td>
<td>[passive sign convention applied to mesh currents in clockwise direction]</td>
</tr>
<tr>
<td>Nodal analysis by inspection</td>
<td>$GV = I_t$</td>
<td></td>
</tr>
<tr>
<td>Mesh analysis by inspection</td>
<td>$RI = V_t$</td>
<td></td>
</tr>
<tr>
<td>Thévenin equivalent circuit</td>
<td>$v_{Th} = v_{oc}$</td>
<td>$R_{Th} = v_{oc}/i_{sc}$</td>
</tr>
<tr>
<td>Norton equivalent circuit</td>
<td>$i_N = i_{sc}$</td>
<td>$R_N = R_{Th}$</td>
</tr>
<tr>
<td>Maximum power transfer</td>
<td>$R_L = R_s$</td>
<td>$P_L(\text{max}) = \frac{v_s^2}{4R_L}$</td>
</tr>
</tbody>
</table>
Problem 3.4 For the circuit in Fig. P3.4:

(a) Apply nodal analysis to find node voltages V_1 and V_2.

(b) Determine the voltage V_R and current I.

\[
\begin{align*}
\frac{V_1 - 16}{1} + \frac{V_2}{\frac{1}{6}} + \frac{V_2 - V_3}{\frac{1}{8}} &= 0 \\
\frac{V_3 - 10}{\frac{1}{6}} + \frac{V_2}{\frac{1}{6}} + \frac{V_3}{\frac{1}{8}} &= 0 \\
\end{align*}
\]

Figure P3.4: Circuit for Problem 3.4.

Solution: (a) At nodes V_1 and V_2,

Node 1: \[\frac{V_1 - 16}{1} + \frac{V_2}{1} + \frac{V_1 - V_2}{1} = 0 \quad \checkmark \quad (1)\]

Node 2: \[\frac{V_2 - V_1}{1} + \frac{V_2}{1} + \frac{V_2}{1} = 0 \quad \checkmark \quad (2)\]

Simplifying Eqs. (1) and (2) gives:

\[
\begin{align*}
3V_1 - V_2 &= 16 \quad (3) \\
-V_1 + 3V_2 &= 0 \quad (4)
\end{align*}
\]

Simultaneous solution of Eqs. (3) and (4) leads to:

\[V_1 = 6 \text{ V}, \quad V_2 = 2 \text{ V}.\]

(b)

\[V_R = V_1 - V_2 = 6 - 2 = 4 \text{ V} \quad \checkmark \]

\[I = \frac{V_2}{1} = \frac{2}{1} = 2 \text{ A} \quad \checkmark \]
Problem 3.3 Use nodal analysis to determine the current I_x and amount of power supplied by the voltage source in the circuit of Fig. P3.3.

![Circuit Diagram](image)

Figure P3.3: Circuit for Problem 3.3.

Solution: At node V, application of KCL gives

$$-9 + \frac{V}{2} + \frac{V}{4} + \frac{V-40}{8} = 0$$

$$V \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right) = 9 + \frac{40}{8}$$

$$\frac{7V}{8} = 9 + 5$$

$$V = 16 \text{ V.}$$

The current I_x is then given by

$$I_x = \frac{V}{4} = \frac{16}{4} = 4 \text{ A.}$$

To find the power supplied by the 40-V source, we need to first find the current I flowing into its positive terminal,

$$I = \frac{V - 40}{8} = \frac{16 - 40}{8} = -3 \text{ A.}$$

Hence,

$$P = VI = 40 \times (-3) = -120 \text{ W}$$

(The minus sign confirms that the voltage source is a supplier of power.)
Problem 3.26 Apply mesh analysis to find the mesh currents in the circuit of Fig. P3.26. Use the information to determine the voltage V.

\[
\begin{align*}
-16 + 2I_1 + 3(I_2 - I_1) &= 0 \\
3(I_1 - I_2) + 2I_2 + 4I_1 &= 0
\end{align*}
\]

Solution: Application of KVL to the two loops gives:

Mesh 1: \[-16 + 2I_1 + 3(I_1 - I_2) = 0,\]
Mesh 2: \[3(I_1 - I_2) + (2 + 4)I_2 = 0,\]

which can be simplified to

\[
\begin{align*}
5I_1 - 3I_2 &= 16 \\
-3I_1 + 9I_2 &= -12.
\end{align*}
\]

Simultaneous solution of (1) and (2) leads to

\[
\begin{align*}
I_1 &= 3 \text{ A}, \\
I_2 &= -\frac{1}{3} \text{ A}.
\end{align*}
\]

Hence,

\[
V = 3(I_1 - I_2) = 3 \left(3 - \frac{1}{3} \right) = 10 \text{ V}.
\]

Approach #2

\[
V = 16 - 2I_1 = 16 - 2 \times 3 = 10 \text{ V}
\]

Approach #3

\[
V = 12 + 2I_2 + 4I_1 = 12 + 2 \times (-\frac{1}{3}) + 4 \times (-\frac{1}{3}) = 12 - 2 = 10 \text{ V}
\]

Approach #1

\[
V = 3(I_1 - I_2) = 3 \times \left(3 - \frac{1}{3} \right) = 10 \text{ V}
\]

\[
\frac{V - 16}{2} + \frac{V}{3} + \frac{V - 12}{2 + 4} = 0 \\
3(V - 16) + 2V + V - 12 = 0 \\
6V - 48 - 12 = 0 \\
6V = 60 \\
V = 10 \text{ V}
\]
Problem 3.43 Apply mesh analysis to the circuit of Fig. P3.43 to find I_x.

![Circuit Diagram](image)

Figure P3.43 Circuit for Problem 3.43.

Solution:

Mesh 1: \[-4 + I_1 + 0.1(I_1 - I_2) + 0.2(I_1 - I_3) = 0\]
Mesh 2: \[0.1(I_2 - I_1) + 0.2I_2 + (I_2 - I_3) = 0\]
Mesh 3: \[0.2(I_3 - I_1) + (I_3 - I_2) + 0.1I_3 = 0\]

\[
\begin{align*}
I_1 &= 3.48 \text{ A}, \quad I_2 = 1.67 \text{ A}, \quad I_3 = 1.82 \text{ A} \\
I_x &= I_3 - I_2 = 1.82 - 1.67 = 0.15 \text{ A}.
\end{align*}
\]
Problem 3.53 Use the by-inspection method to establish a node-voltage matrix equation for the circuit in Fig. P3.53. Solve the matrix equation by MATLAB® or MathScript software to find V_1 to V_4.

![Circuit diagram](image)

Figure P3.53: Circuit for Problem 3.53.

Solution:

$$G_{11} = \frac{1}{2+1} + \frac{1}{3+4} = 0.476$$

$$G_{12} = G_{21} = \frac{1}{2+1} = -0.333$$

$$G_{13} = G_{31} = 0$$

$$G_{14} = G_{41} = -\frac{1}{3+4} = -0.143$$

$$G_{22} = \frac{1}{1+2} + \frac{1}{7} + \frac{1}{6} = 0.643$$

$$G_{23} = G_{32} = -\frac{1}{6} = -0.167$$

$$G_{24} = G_{42} = 0$$

$$G_{33} = \frac{1}{5} + \frac{1}{6} + \frac{1}{9} = 0.478$$

$$G_{34} = G_{43} = -\frac{1}{5} = -0.2$$

$$G_{44} = \frac{1}{3+4} + \frac{1}{5} = 0.343$$

Application of Eq. (3.26) gives:

$$\begin{bmatrix}
0.476 & -0.333 & 0 & -0.143 \\
-0.333 & 0.643 & -0.167 & 0 \\
0 & -0.167 & 0.478 & -0.2 \\
-0.143 & 0 & -0.2 & 0.343
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
V_3 \\
V_4
\end{bmatrix}
=
\begin{bmatrix}
2 \\
0 \\
-2 \\
-3
\end{bmatrix}$$

Matrix inversion gives:

$$V_1 = -8.1689 \text{ V}, \quad V_2 = -8.4235 \text{ V}, \quad V_3 = -16.155 \text{ V}, \quad V_4 = -21.5748 \text{ V}.$$
Problem 3.55 Find I_0 in the circuit of Fig. P3.55 by developing a mesh-current matrix equation and then solving it using MATLAB® or MathScript software.

![Circuit Diagram](image)

Figure P3.55 Circuit for Problem 3.55.

Solution: Application of Eq. (3.29) gives:

$$
\begin{bmatrix}
50 & -20 & -20 & 0 \\
-20 & 80 & -20 & 0 \\
-20 & -20 & 50 & -10 \\
0 & 0 & -10 & 50
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
I_3 \\
I_4
\end{bmatrix}
=
\begin{bmatrix}
12 \\
0 \\
0 \\
0
\end{bmatrix}
$$

Matrix inversion yields:

$$
I_1 = 0.54 \text{ A}, \quad I_2 = 0.36 \text{ A}, \quad I_3 = 0.38 \text{ A}, \quad I_4 = 0.08 \text{ A} \\
I_0 = I_3 - I_4 = 0.37 - 0.07 = 0.3 \text{ A}.
$$
Exercise 3-11 Determine the Thévenin-equivalent circuit at terminals \((a,b)\) in Fig. E3-11.

\[R_{th} = \frac{(2 + 3)}{115} = \frac{5}{115} = 0.5 \Omega \]

Figure E3.11

Solution:

(1) **Open-circuit voltage**

We apply node voltage method to determine open-circuit voltage:

\[\frac{V_1}{2} - 4 + \frac{V_1 - V_2}{3} = 0, \]

\[\frac{V_2 - V_1}{3} + 3 + \frac{V_2}{5} = 0. \]

Solution gives: \(V_2 = -3.5\) V.

Hence, \(V_{th} = V_{oc} = -3.5\) V.

(2) **Short-circuit current**

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse *Circuit Analysis and Design*
Because of the short circuit,

\[V_2 = 0. \]

Hence at node \(V_i \):

\[
\begin{align*}
\frac{V_i}{2} - 4 + \frac{V_i}{3} &= 0 \\
V_i \left(\frac{1}{2} + \frac{1}{3} \right) &= 4 \\
V_i &= \frac{24}{5} \text{ V} \\
l_1 &= \frac{V_i}{3} = \frac{24}{5 \times 3} = \frac{8}{5} \text{ A}, \\
l_{sc} &= l_1 - 3 - \frac{8}{5} - 3 = -\frac{7}{5} = -1.4 \text{ A} \\
R_{th} &= \frac{V_{th}}{l_{sc}} = \frac{-3.5}{-1.4} = 2.5 \text{ } \Omega.
\end{align*}
\]

Thévenin equivalent:

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuit Analysis and Design
Problem 3.65 Find the Thévenin equivalent circuit at terminals \((a, b)\) for the circuit in Fig. P3.65.

\[
\begin{align*}
V &= \frac{V}{4} + \frac{V}{6} + \frac{V - 2}{3} = 4 \\
\text{Hence, } V &= \frac{56}{9} \text{ V.} \\
V_{\text{Th}} = V_{\text{oc}} &= V - 2 = \frac{56}{9} - 2 = 4.22 \text{ V.}
\end{align*}
\]

Suppressing the sources:

\[
R_{\text{Th}} = \frac{4}{3} + 2.5 = 3.83 \text{ }\Omega
\]

Thévenin equivalent circuit:
Because of the short circuit, \(V_2 = 0 \).

Hence at node \(V_1 \):

\[
\frac{V_1}{2} - 4 + \frac{V_1}{3} = 0
\]

\[
V_1 \left(\frac{1}{2} + \frac{1}{3} \right) = 4
\]

\[
V_1 = \frac{24}{5} \text{ V}
\]

\[
I_1 = \frac{V_1}{3} = \frac{24}{5 \times 3} = \frac{8}{5} \text{ A},
\]

\[
I_{ce} = I_1 - 3 = \frac{8}{5} - 3 = -\frac{7}{5} = -1.4 \text{ A}
\]

\[
R_{Th} = \frac{V_{th}}{I_{ce}} = \frac{-3.5}{-1.4} = 2.5 \text{ } \Omega
\]

Thévenin equivalent:

![Thévenin equivalent circuit diagram]

Fawwaz T. Ulaby, Michel M. Mahabiz and Cynthia M. Furse Circuit Analysis and Design
Exercise 3-14 The bridge circuit of Fig. E3-14 is connected to a load R_L between terminals (a,b). Choose R_L such that maximum power is delivered to R_L. If $R = 3 \, \Omega$, how much power is delivered to R_L?

\[24 \, V \]

![Figure E3-14](image)

\textbf{Solution:} We need to remove R_L and then determine the Thévenin equivalent circuit at terminals (a,b). Open-circuit voltage:

\[24 \, V \]

The two branches are balanced (contain same total resistance of $3R$). Hence, identical currents will flow, namely

\[I_1 = I_2 = \frac{24}{3R} = \frac{8}{R} \, \text{A}. \]

\[V_{oc} = V_a - V_b = 2RI_1 - RI_2 = RI_1 = \frac{8}{R} R = 8 \, \text{V}. \]

To find R_{TB}, we replace the source with a short circuit:

Fawwaz T. Ulaby, Michel M. Mahabirz and Cynthia M. Furse, \textit{Circuit Analysis and Design}
\[R \parallel 2R = \frac{R \times 2R}{R + 2R} = \frac{2}{3} R \]

Hence,

\[R_{\text{Th}} = \frac{4R}{3} \]

and the Thévenin circuit is

Fawwaz T. Ulaby, Michel M. Mahabariz and Cynthia M. Furse *Circuit Analysis and Design*
For maximum power transfer with $R = 3 \, \Omega$, R_L should be

$$R_L = \frac{4R}{3} = \frac{4 \times 3}{3} = 4 \, \Omega,$$

and

$$P_{\text{max}} = \frac{V_s^2}{4R_L} = \frac{8^2}{4 \times 4} = 4 \, \text{W}.$$
Problem 3.81 What value of the load resistor R_L will extract the maximum amount of power from the circuit in Fig. P3.81, and how much power will that be?

![Figure P3.81: Circuit for Problem 3.81.](image)

Solution: We start by obtaining the Thévenin equivalent circuit at terminals (a,b), as if R_L were not there. We first find V_{th}:

\[
\begin{align*}
\frac{V}{6} - 3 + \frac{V}{12} &= 0 \\
V &= 12 \text{ V}.
\end{align*}
\]

Hence,

\[
\frac{V}{6} = 2 \text{ V}.
\]

Voltage division gives:

\[
V_{\text{th}} = V_{\text{oc}} = \left(\frac{8}{4+8}\right) V = \frac{8}{12} \times 12 = 8 \text{ V}.
\]

Next, we suppress the current source to find R_{th}:

\[
R_{\text{th}} = 10.44 \Omega.
\]

Equivalent circuit:

![Equivalent circuit](image)

For maximum power transfer to R_L,

\[
R_L = R_{\text{th}} = 10.44 \Omega
\]

\[
I = \frac{8}{2 \times 10.44} = 0.38 \text{ A}
\]

\[
P_{\text{max}} = I^2 R_L = (0.38)^2 \times 10.44 = 1.53 \text{ W}.
\]