Optical Power-Electronic Technology

S.K. Mazumder, Sr. Member, IEEE, A. Mojab, H. Riazmontazer, S. Mehrnami, Student Members, IEEE

Abstract—In this paper, a top-level outline on the work related to optically-switched power semiconductor devices that have been carried out at the University of Illinois, Chicago (UIC) or those in which UIC has been involved has been outlined. In addition, an outline on optical control that affects the switching dynamics of the power semiconductor devices is provided.

Disclaimer: This paper emulates an earlier paper published by the authors with the following description and is represented here primarily for further visibility and educational outreach: S.K. Mazumder, A. Mojab, and H. Riazmontazer, “Optically-switched wide-bandgap power semiconductor devices and device-transition control,” Physics of Semiconductor Devices: 17th International Workshop on the Physics, Springer, pp. 57–65, 2013. This work is supported in part by U.S. NSF (award no. 1202384) and U.S. ARPA-E (award no. DE-AR0000336). However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the NSF or ARPA-E.

I. INTRODUCTION

Optically-triggered power semiconductor devices provide some major advantages over their electrically-triggered counterpart. Such advantages are multi-fold and encompass a) immunity to electromagnetic interference, b) elimination of back-propagation effect from the power stage to the control stage, c) higher reliability due to complete electrical isolation, d) simple realization of gate drive for high power multilevel and series connected device based power-conversion systems, and e) easy controllability of switching dynamics thereby enabling systems control at the device level to name a few. As such, the potential applications of such optically-triggered power semiconductor devices include fly-by-light (FBL), smart grid, electric vehicles, power-quality conditioners, renewable energy, electromechanical launch systems, and pulsed-power systems. Another application of such a technology is the ability to control the switching dynamics of both electrically- and optically-triggered power semiconductor devices thereby enabling systems control at device level with regard to several performance and reliability parameters including dv/dt and di/dt stress, switching loss, as well as noise mitigation.

II. OVERVIEW OF PREVIOUSLY ACHIEVEMENTS ON THE OPTICAL POWER SEMICONDUCTORS

A. Optically-Triggered Power Transistor (OTPT) [1]

Our research on optically-triggered power semiconductor switches initiated with a lateral GaAs-based optically-triggered power transistor (OTPT). GaAs has a high level of light absorption and hence a high quantum efficiency. Fig. 1 shows the device structure of the GaAs-based OTPT, micrograph of a prototype OTPT and its packaged realization [1]. The OTPT has a lateral structure with two electrodes: collector and emitter. N-drift, P-base, and N+ collector regions are grown using MOCVD technique. Shallow low-energy Si-ion implanted N+ regions make the contacts between the emitter electrode and the semiconductor. Optical window is defined by the Si3N4 anti-reflecting layer of a particular thickness, which results in minimum reflection of light. In the blocking state, the applied voltage is supported by the reverse biased P-N junction between the P-base and N-drift regions. In Fig. 2, 3-D diagrams of electric-field distribution and photogeneration rate across the device in

Fig. 1: (a) Device structure of OTPT. (b) Micrograph of an OTPT and its die wire bonding. (c) Packaged realization of the OTPT [1].

Fig. 2: (a) Three-dimensional view of the electric-field distribution inside the OTPT at the instant of breakdown. (b) Three-dimensional view of the uniform photogeneration rate inside the OTPT [1].
Fig. 1a is shown. This rectangular electric field enables reduced effective distance between collector and emitter electrodes of the unit cell of the OTPT and yields higher optical gain, because photogenerated carriers travel less distance inside N-drift region. Also, a rectangular electric field (Fig. 2a) mobilizes the photogenerated carriers in a uniform manner, as demonstrated in Fig. 2b. The quantum efficiency and the switching speed of the OTPT depend strongly on the minority-carrier recombination lifetime in the P-body region. A higher doping of the P-body results in a shorter lifetime, which ensures faster turn-off due to rapid recombination when the light shuts off, but, it also leads to a lower device gain because photogenerated carriers recombine easily and have less chance of contributing towards conductivity modulation. The on-state resistance of the OTPT, varies with the optical intensity as shown in Fig. 3.

Subsequently, attempt was made to integrate the OTPT as a driver for a set of higher-voltage power semiconductor devices to realize optically-triggered hybrid power devices. In Fig. 5, the schematic diagram of one such hybrid package and the tested prototype package is shown. The aim of such hybrid packaging is to reduce the interconnect length to minimize the parasitic impedance between the OTPT(s) and the PSD due to interconnects.

The concept of OT hybrid power semiconductor device was tried using a combination of triggering OTPT(s) and high-voltage devices such as SiC MOSFET, SiC VIJFET, Si IGBT, Si MOSFET devices. Fig. 6 [1] shows the transient performance of such optical hybrid devices.

B. Vertical Optically-Triggered Power Transistor

More recently, a vertical OTPT based on Si has been designed, fabricated, and characterized that can support much higher current of operation and fast switching dynamics. The device is designed to support a junction temperature of 200 °C. Even though the initial goal of the OTPT is to support the function of Q1 in Fig. 12 that represents an optically-triggered emitter turn-off thyristor, the vertical OTPT can be used independently and for other hybrid configurations. Figs. 7 and 8 demonstrate the information regarding the OTPT.

C. Optically-Triggered SiC GTO Thyristor [2],[3]

The GaAs-based OTPTs described in Section II were used along with a SiC GTO [3]. The device structure and fabricated prototype of a SiC GTO is shown in Fig. 9 along with switching results in Fig. 10. The optically-triggered GTO is also shown in Fig. 11. Two different bias voltages are applied to the gate of the thyristor by using the OTPTs. This voltages force the thyristor to turn on and off. An important advantage of using optical switches in GTO structure is removing the effect of electromagnetic interference (EMI) in the low-power parts of the GTO. The simulation results showing the switching capability of this proposed optically-triggered GTO is given in Fig. 10.

D. A New Single-Biased All-Optically Triggered Configuration for ETO Thyristor [4]

ETOs are one of the most promising devices in very high voltage fast switching power electronic applications.
Fig. 6: Nominal switching operation for the OTPT(s) coupled to different types of power semiconductor devices [1]: (a) Si-based power MOSFET (CoolMOS part number 47N50), (b) Si-based IGBT (IRG4CC50), (c) 600 V normally-on SiC-based VJFET, and (d) 600 V SiC-based DMOSFET. The dynamics of the SiC DMOSFET is comparatively slower due to the high input capacitance of the device and is not attributed to the OTPT.

Fig. 7: Vertical experimental OTPT device geometry, packaging architecture and actual package.

Fig. 8: Experimental I-V and switching characterization of the vertical OTPT.
The novel single-biased all-optically triggered ETO is shown in Fig 12. The device structure of the SiC thyristor is shown in Fig. 13. Here an optically-gated thyristor is used. More details about the all-optical ETO, optical thyristor and its manufacturing process are given in [5], [6]. The laser light is exposed directly to the n-type gate region of the thyristor; furthermore, the depletion region is highly expanded across the main blocking p-n junction between the gate and drift layers. So the gate layer plays an important role in absorbing light and determining the

Fig. 11: Schematic of the switching simulation circuit for optically-controlled SiC GTO [2].

The novel single-biased all-optically triggered ETO is shown in Fig 12. The device structure of the SiC thyristor is shown in Fig. 13. Here an optically-gated thyristor is used. More details about the all-optical ETO, optical thyristor and its manufacturing process are given in [5], [6]. The laser light is exposed directly to the n-type gate region of the thyristor; furthermore, the depletion region is highly expanded across the main blocking p-n junction between the gate and drift layers. So the gate layer plays an important role in absorbing light and determining the

Fig. 12: Structure of the hybrid all-optical ETO. L_G and L_A represent the packaged parasitic inductance.
thyristor breakdown voltage. Since the built-in potential of the top p-n layers of the main thyristor is about 3 V, we used an NMOSFET with high threshold voltage to prevent it from conducting in the on-state.

A schematic diagram of the OTPT used in the ETO configuration in Fig. 12 is shown in Fig. 14. This optical device can be implemented on either Si or GaAs substrates. The channel width of this device can be modulated according to the power of the exposed laser beam. Under dark conditions, the depletion layer from two adjacent p+ regions close the device channel and the high resistive mode is obtained. When illuminated, the channel opens according to the power of the light and the low resistive mode is obtained. An important advantage of this kind of optical switch, which makes it superior to other kinds of MOSFET-based switches, is the controlled conductivity upon the optical power.

The ETO turn-on process starts by illuminating both the OTPT and thyristor at the same time. Since SiC is a wide bandgap material with a bandgap of 3.23 eV, a laser beam with a wavelength of less than about 380 nm is required to trigger the SiC thyristor. Currently, we have used a 250-nm laser beam for the SiC MOSFET. When the OTPT Q1 is illuminated, this OTPT goes to low resistivity condition and connects the gate of the SiC MOSFET to the bias voltage. Therefore, MOSFET (Q3) turns on rapidly, while there is no significant current passing through Q2. On the other hand, when the OTPT Q2 is illuminated and Q1 is off, the gate of SiC MOSFET is discharged through the path provided by Q2.

![Fig. 13: Structure of the optical SiC thyristor [4].](image)

<table>
<thead>
<tr>
<th>Anode</th>
<th>Gate</th>
<th>Cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>P+</td>
<td>3 um</td>
<td>n+</td>
</tr>
<tr>
<td>n</td>
<td>2.5 um</td>
<td>1e17 cm⁻³</td>
</tr>
<tr>
<td>p</td>
<td>90 um</td>
<td>1e14 cm⁻³</td>
</tr>
<tr>
<td>p</td>
<td>2.5 um</td>
<td>5e17 cm⁻³</td>
</tr>
<tr>
<td>n+</td>
<td>Substrate</td>
<td>5e18 cm⁻³</td>
</tr>
</tbody>
</table>

![Fig. 14: Device structure for the OTPT of the optical ETO in Fig. 12.](image)

III. OPTICALLY-TRIGGERED DRIVER BASED TRANSITION CONTROL OF POWER SEMICONDUCTOR DEVICES

Once the OTPT in Fig. 1 was realized in fabrication, two such OTPTs were used along with a SiC MOSFET to form a hybrid optical package as shown in Fig. 16. The OTPTs Q1 and Q2 work oppositely and, respectively, turn-on and turn-off the SiC MOSFET. When the OTPT Q1 is illuminated, this OTPT goes to low resistivity condition and connects the gate of the SiC MOSFET to the bias voltage. Therefore, MOSFET (Q3) turns on rapidly, while there is no significant current passing through Q2. On the other hand, when the OTPT Q2 is illuminated and Q1 is off, the gate of SiC MOSFET is discharged through the path provided by Q2.

![Fig. 15: Currents in the optical ETO [4].](image)

![Fig. 16: Optically-controlled hybrid SiC device structure [7].](image)

To verify the feasibility of the optical hybrid package at the converter level, it is used as the main switch in a buck converter. It has been shown in Fig. 17, that by...
varying the optical intensity through OTPTs one is able to change the efficiency of the converter. As the optical power through the OTPTs increase the total switching transition duration increases, as the results switching loss decreases and efficiency increases. An initial sharp increment in the power-conversion efficiency is followed by a gradually saturating behavior. This shape is almost reciprocal to that observed in the variations of the OTPT on-resistance.

This optically-controlled driver was also used in a boost converter. The boost converter was tested up to an output of 250 W, feeding a 400 ohm low-inductance resistive load. The switching frequency was set at 0.25 MHz. The prototype and test results for boost converter are shown in Fig. 18 and Fig 19. As indicated earlier, OTPTs can be placed in the charging and discharging path of the gate of an insulated gate power semiconductor device such as IGBT and MOSFET to modulate the turn-on and turn-off transitions by modulating the optical intensity to the optical window of the OTPTs. In the remaining section, initially the principle of optically-triggered switching-transition control is described. Subsequently, its implementation for MOSFET and IGBT is briefly illustrated. Finally, the experimental results are provided to support the theoretical explanations.

Fig. 17: Power-conversion efficiency of the buck converter with varying OTPT optical power and under the following conditions: \(V_{in} = 20 \text{V}, \) \(f = 100 \text{kHz}, \) duty cycle = 50%, \(R_{	ext{load}} = 2 \Omega, \) and \(P_{	ext{load}} = 50 \text{W} \) [1].

Fig. 18: Boost converter prototype showing OTPT-based optically-triggered packaged hybrid power device [7].

Fig. 19: Dc waveform shows the output of boost converter (328 V) and the pulsed waveform shows the drain to source voltage of the power MOSFET [7].

Turn-on and turn-off transients of the insulated-gate power semiconductor devices comprise a small portion of their switching operation period. However, these transients have a significant effect on the total switching loss which is a prominent part of the total loss of the converter. Furthermore, they have a direct effect on the conducted and radiated electromagnetic interference and device stresses such as peak overvoltage and peak reverse recovery current. Therefore, ability to control the switching transition is a pathway towards the total optimization in terms of loss, device stress and EMI. Furthermore, using the optical beam along with the OTPTs to modulate the switching transitions enables one to use a single beam of light to encode the PWM and intensity modulation signals and separate the control stage from the power stage.

Fig. 20: Key waveforms of turn-off behavior of a power MOSFET.

The key waveforms of the turn-off transition of a SiC power MOSFET is shown in Fig. 20 [8]. The drain-to-source voltage slope \(\frac{dv_{DS}}{dt} \) in the \(\frac{dv_{DS}}{dt} \) control region shown in the Fig. 23 is approximated using:

\[
\frac{dv_{DS}}{dt} \approx \frac{v_{GS,TH+ID}/g_{fs}}{R_GC_{GD}}
\]

(1)

where \(g_{fs} \) is the forward transconductance, \(I_D \) is the drain current, \(C_{GD} \) is the Miller capacitance, \(R_G \) is the gate resistance, and \(v_{GS,TH} \) is the threshold voltage of MOSFET. The slope of the drain current \(\frac{di_D}{dt} \) in the \(\frac{di_D}{dt} \) control region shown in Fig. 23, is also approximated using:

\[
\frac{di_D}{dt} \approx \frac{-v_{GS,TH+ID}/g_{fs}}{R_GC_{iss}/g_{fs}+L_S}
\]

(2)

In (2) \(C_{iss} \) is the input capacitance of a MOSFET and \(L_S \) is the sum of parasitic inductances seen from the source
of MOSFET. Because of the parasitic inductances in the commutation path, $\frac{di_g}{dt}$ in this region directly affects the overvoltage stress. According to (1) and (2), $\frac{dv_{DS}}{dt}$, $\frac{di_g}{dt}$ and voltage overshoot and oscillation in the turn-on transition can be controlled by controlling the gate resistance of the MOSFET which in turn can be controlled by modulating the optical intensity to the OTPT which is placed in the discharging path of the gate of MOSFET.

Similarly, the key waveforms of the turn-on transition of an IGBT are shown in Fig. 21. Similar to the MOSFET’s case, the slope of the collector current ($\frac{di_c}{dt}$) and slope of collector-to-emitter voltage ($\frac{dv_{CE}}{dt}$) in the turn-on transition are, respectively, approximated using (3) and (4):

$$\frac{di_c}{dt} \approx \frac{V_{CC} - V_{GE}}{R_{GGE} + L_d}$$

$$\frac{dv_{CE}}{dt} \approx -\frac{V_{CC} - V_{GET} - L_d}{R_{GGE}}$$

In (3) and (4) V_{CC} represents the maximum gate voltage, V_{GET} represents the threshold voltage of IGBT, g_m is the forward trans-conductance of IGBT, C_{GE} is the gate-to-emitter capacitance, C_{GC} is the gate-to-collector capacitance, and I_{Ld} is the load current of IGBT. $\frac{di_c}{dt}$ of IGBT has a direct effect on the reverse recovery current of free-wheeling diode and current overshoot of the IGBT during turn-on. According to (3) and (4) the $\frac{di_c}{dt}$ and $\frac{dv_{CE}}{dt}$ of IGBT can be controlled by adjusting the gate resistance of IGBT which in turn can be controlled by modulating the optical intensity through the OTPT which is placed in the charging path of the gate.

![Fig. 21: Key waveforms of turn-on behavior of an IGBT.](image)

The standard clamped-inductive test circuit and control block diagram for optical transition control are shown in Fig. 22. The test circuit comprises a bridge leg with the hybrid device package (comprising M1 and the two OTPTs) placed in the low side and a self-gated IGBT (M2) in the high side. M1 and M2 can be either MOSFET or IGBT. OTPT1 and OTPT2 work complementarily and turn the M1 on and off, respectively. V_1 and V_2, respectively, dictate the turn-on $\frac{di_c}{dt}$ and $\frac{dv_{CE}}{dt}$ of M1 by controlling the current passing through the laser1. The current through the laser1 controls the optical intensity which is emitted to OTPT1 and indirectly controls the gate resistance of M1 during turn-on. Similarly voltages V'_1 and V'_2, respectively, control the turn-off $\frac{dv_{DS}}{dt}$ and $\frac{di_g}{dt}$ of M1 through adjusting the current passes through the laser2.

During the turn-off transition for MOSFET V_{GS} and $\frac{dv_{DS}}{dt}$ are sensed using sensing circuits. Then they are fed to the control circuit. Because of the Δ seconds delay in the OTPT and feedback-loop control circuit predicts the onset of transition from the $\frac{dv_{DS}}{dt}$ to $\frac{di_g}{dt}$ control region and initiates the transition in Δ seconds prior the start of $\frac{di_g}{dt}$ control region by changing the current of the laser-driver2 from a value corresponding to V'_1 to another value corresponding to V'_2. Similarly, during the turn-on transition for IGBT, $\frac{di_c}{dt}$ is sensed and fed to the control circuit. Control circuit predicts the onset of transition from $\frac{di_c}{dt}$ to $\frac{dv_{CE}}{dt}$ control region by changing the current of the laser-driver1 from a value corresponding to $V'1$ to another value corresponding to $V'2$.

The complete circuit set up in Fig. 23 is designed and fabricated following Fig. 22. This design includes power circuit and control circuit as well as laser driver and laser in a single board.

![Fig. 22: Test circuit and control block diagram.](image)

![Fig. 23: Fabricated board, which includes power circuit, control circuit, laser, and laser driver [8], [9].](image)

The turn-off drain-to-source voltage (V_{DS}) of M1, and current of laser driver for the cases of conventional gate drive and proposed optical controller are, respectively, found in Fig. 24 and Fig. 25. It has been shown that by reducing the current of the laser driver (which increase
the resistance of OTPT2) in optical controller, the overvoltage and oscillation of v_{DS} lessens comparing to the conventional gate driver. This is because of reduction of di_C/dt in the di_C/dt control region.

Experimental results of turn-on optical control of M1 (which is IGBT in this case) are shown in Fig. 26. In this case the current of the laser driver is fixed in the dv_{CE}/dt control region. As the result, the dv_{CE}/dt is similar for all the cases. On the other hand, as the di_C/dt is decreased in the di_C/dt control region the reverse-recovery current lessens.

Experimental results of turn-off optical control of M1 (which is IGBT in this case) are shown in Fig. 25. In this case the current of the laser driver current, 1 A/div; CH2: drain-source voltage, 100 V/div; time division: 200 nsec/div.

Experimental results of turn-on optical control of M1 (which is IGBT in this case) are shown in Fig. 26. In this case the current of the laser driver is fixed in the dv_{CE}/dt control region. As the result, the dv_{CE}/dt is similar for all the cases. On the other hand, as the di_C/dt is decreased in the di_C/dt control region the reverse-recovery current lessens.

V. SUMMARY AND CONCLUSIONS

In this paper, an overview of the work related to optically-triggered power semiconductor devices and switching transition control have been outlined. With regard to optical devices, a systematic pathway of progress and feasibility with regard to realization of varied functionality, complexity, and material base have been demonstrated. The transition control using optically-triggered devices have been demonstrated for field-effect as well as bipolar power semiconductor devices along with realization of control mechanism. It appears that optical control provides a relatively simple and yet a robust approach to controlling switching dynamics on the fly that can/will have profound effect on system reliability, efficiency, and dynamic response.

REFERENCES

