A Review of Current Research Trends in Power-Electronic Innovations in Cyber-Physical Systems

S.K. Mazumder, Fellow, IEEE (University of Illinois at Chicago), A. Kulkarni, Member, IEEE (Honeywell Technologies), S. Sahoo, Member, IEEE (Aalborg University), F. Blaabjerg, Fellow, IEEE (Aalborg University), A. Mantooth, Fellow, IEEE (University of Arkansas), J. Balda, Senior Member, IEEE (University of Arkansas), Y. Zhao, Senior Member, IEEE (University of Arkansas), J. Ramos-Ruiz, Student Member, IEEE (Texas A&M University), P. Enjeti, Fellow, IEEE (Texas A&M University), P.R. Kumar, Fellow, IEEE (Texas A&M University), L. Xie, Senior Member, IEEE (Texas A&M University), J. Enslin, Fellow, IEEE (Clemson University), B. Ozpineci, Fellow, IEEE (Oak Ridge National Lab), A. Annaswamy, Fellow, IEEE (Massachusetts Institute of Technology), H. Ginn, Senior Member, IEEE (University of South Carolina), F. Qiu, Senior Member, IEEE (Argonne National Laboratory), J. Liu, Member, IEEE (Argonne National Laboratory), B. Smida, Senior Member, IEEE, (University of Illinois at Chicago), C. Ogilvie, Student Member, IEEE (Florida State University), J. Ospina, Member, IEEE (Florida State University), C. Konstantinou, Senior Member, IEEE (Florida State University), M. Stanovich, Member, IEEE (Florida State University), K. Schoder, Member, IEEE (Florida State University), M. Steurer, Senior Member, IEEE (Florida State University), T. Vu, Member, IEEE (Clarkson University), L. He, Member, IEEE, (University of Illinois at Chicago), and E. Pilo de la Fuente, Member, IEEE (Universidad Francisco de Vitoria and EPRail Research and Consulting)

Abstract—In this paper, a broad overview of the current research trends in power-electronic innovations in cyber-physical systems (CPSs) is presented. The recent advances in semiconductor device technologies, control architectures, and communication methodologies have enabled researchers to develop integrated smart CPSs that can cater to the emerging requirements of smart grids, renewable energy, electric vehicles, trains, ships, internet of things (IoTs), etc. The topics presented in this paper include novel power-distribution architectures, protection techniques considering large renewable integration in smart grids, wireless charging in electric vehicles, simultaneous power and information transmission, multi-hop network-based coordination, power technologies for renewable energy and smart transformer, CPS reliability, transactive smart railway grid, and real-time simulation of shipboard power systems. It is anticipated that the research trends presented in this paper will provide a timely and useful overview to the power-electronics researchers with broad applications in CPSs.

I. INTRODUCTION

The recent advancements in wide-bandgap semiconductor devices, electric vehicles and locomotives, and a general push from the government agencies worldwide towards renewable energy integration have resulted in a number of advancements in power electronics research. These include, but are not limited to, high efficiency power circuit topologies, sophisticated battery management and charging systems, intelligent power converters, wireless power transfer, internet of things (IoT) devices, etc. A feature that distinguishes the current research from the conventional power electronics is the attempt to seamlessly integrate the cyber layer consisting of control, communication and computing with the physical layer that includes the power semiconductor devices, passive and active circuit components. It is this integration that helps in developing smart power solutions for applications such as IoT, fast charging solutions for electric vehicles, aircraft for urban air mobility, etc.

In this paper, a review of the current research trends in power electronics innovations in CPSs [1] are presented. This is described with reference to several broad application areas such as smart/micro/nano grids, e-mobility, smart energy routing, IoTs, and resilient energy systems. The topics include alternate power distribution architectures, topologies, protection schemes, communication technologies, smart power components, and reliability of CPS. Fig. 1 pictorially depicts all of the sections presented in this paper and maps them to the components of CPS.

It must be noted that such a broad collection of research topics that come under CPS has not been presented in literature. This paper is targeted at enabling the research community in the areas of power electronic hardware, control techniques and communication technology (wired/wireless) to look for integrated CPS solutions that can help in developing smart and resilient power converter technologies with the ultimate goal of achieving energy sustainability.

The organization of the paper is as follows. Section II introduces resilient energy CPS. Section III describes a power architecture and protection technology in modern and smart grids. Section IV discusses the recent trends and issues in e-mobility and power and information co-transmission. In Section V, promising methods for coordinated control of power-electronics based network are discussed. Section VI gives an overview of the reliability in CPSs while Section VII describes power topology advances and smart transformer modules. In Section VIII, a transactive approach to cost of electricity reduction in a smart railway grid is outlined followed by a description of real-time simulation for shipboard power systems in Section IX. Conclusions are provided in Section X.

II. CYBER-PHYSICAL AND RESILIENT ENERGY SYSTEMS

A power/energy system can be described as a CPS [1], where a network of heterogeneous energy-suppliers and end-users form the physical layer; and the sensors, communication networks, supervisory control and data acquisition (SCADA) systems, and control systems form the cyber layer, as shown in Fig. 2. The proper operation of an energy system relies heavily on data collection, processing, and transmission, all conducted by the cyber layer. For
example, a variety of system measurements are synthesized at a SCADA to assist in system monitoring, protection, real-time control, and economic dispatch [2]. Recently, the increasing deployment of advanced metering infrastructure, emerging communication networks, and powerful computing units have allowed for an even more wide-ranging monitoring and remote-control capability for energy systems.

Although it is expected that the increasing investment in the cyber layer will make an energy system more resilient to contingencies, many still are concerned that the increasing dependence of system operations on cybernetic technologies might introduce new challenges. First, a malfunction of a cyber-domain component could lead to high-impact physical-domain contingencies. For example, the cause of the costly Northeastern 2003 blackout was believed to be a software bug in the alarm system that hindered it from responding to a supposedly minor fault [3]. Second, adversaries might exploit or even plant loopholes in the cyber-layer to maliciously maneuver system operations or to steal private and security-related information. In the 2015 Ukraine power grid cyber-attacks, the adversaries corrupted the information system to paralyze the power supply for tens of thousands of customers [1]. Third, when cyber-events are accompanied by physical contingencies such as faults, as shown in Fig. 2, the harmful impacts might be even more severe. Fourth, many recent works have underlined the emerging challenges owing to the rapid integration of distributed energy resources [4]-[6], as their growing distributed capacity calls for the need of coordination to a certain extent, however, the sheer number creates difficulty for monitoring of cyber-physical threats. Fifth, the expanding datasets about an energy system may be eluding proprietary and security related data; advanced data mining approaches can recover safety-critical information [7][8]. For example, it is shown in [9] that using only publicly available data is enough to launch attacks to disrupt the operation of the power system of New York city. Sixth, many are concerned about the cyber-security of new technologies like Internet of Things and cloud computing [10]-[11]. While the former promotes more communications, the latter requires the concentration of data, both of which could be vulnerable to cyber-attacks [10]. To build a full-fledged energy CPS, the resilience issue with respect to all sorts of cyber-physical threats needs to be thoroughly addressed.

Resilience-related problems for an energy CPS have been studied recently with transdisciplinary approaches. For instance, functional analysis [12], data-driven approaches [13], and stochastic optimization techniques [14] have shown promising results in studying system analysis, attack detection, and system-hardening problems. Many cyber-attack detection methods have been developed recently [15]-[19]. Both model-based and model-free methods have been developed [15]. For the former, attack detection techniques based on weighted least squares (WLSs) formulations to be used in applications like state estimations [16][17]; meanwhile, standard fault detection and isolation methods like observer-based fault detection methods have been developed as well [18]. As for model-free methods, a variety of machine learning based methods have been developed [7][8][19], ranging from supervised learning approaches [8][19] and unsupervised counterparts [7].

III. POWER ARCHITECTURES AND PROTECTION SCHEMES IN MODERN POWER GRIDS

A. Power Electronics Intelligence at the Network Edge - (PIVE) Inverter Technology at the Grid Edge

Distributed energy resources such as solar are expected to grow substantially in the near future thanks to the sharp drop
in the cost of solar panels. More than half of the total U.S. photovoltaic (PV) capacity comes from distributed PV connected to distribution systems [20]. High penetration of distributed energy resources typically have variable output, therefore, maintaining a good voltage profile becomes challenging due to the relatively low spatial and temporal resolution of voltage control devices [21]. In traditional residential systems, the house/load is directly connected to the grid and the residential load is susceptible to grid voltage variations. Further, it is not possible to limit the amount of power delivered to each consumer in case of limited availability such as during disasters. Furthermore, nonlinear residential loads inject current harmonics into the grid.

A solution for fast volt-VAR control has been studied in [22], where an edge of network grid optimization (ENGO) device is used to inject reactive power at the secondary side of distribution transformers, correcting the voltage variations between 2-13 V at the edge of the grid. Such a device has been shown to work autonomously, with a sub-cycle response. Another option is the use of smart transformers to compensate for voltage variations at the grid edge [23][24]. These transformers combine line and medium frequency transformers with partially rated power electronic modules.

In a recent study [25], a self-organizing power electronics converter (Fig. 3) with control intelligence at the edge of the electric distribution network has been introduced. The proposed system, called Power Electronics Intelligence at the Network Edge (PINE), shown in Fig. 3, consists of three main stages: a front-end PWM converter that reduces current harmonics and maintains constant dc-link voltage, rooftop solar PV/Battery system connected to the dc-link and an output PWM converter that feeds the load. The proposed approach enables several advantages. The PINE converter processes all the power from/to the grid, adding the ability to manage and route the energy in all directions, this enables utility companies to limit the amount of energy delivered to each customer, particularly useful during power outages. Also, because PINE allows for output voltage to be regulated, the voltage regulation needed from the utility company can be significantly reduced. Finally, the rectifier section of the topology can be controlled to exhibit a power factor close to unity, reducing the rms value of distribution line currents and thereby minimizing losses.

To study the behavior of multiple PINE converters connected in a distribution network (Fig. 4), an average model for an individual converter was developed. The average model is exercised on a test feeder based on the IEEE-37 test-node feeder [26], as shown in Fig. 4. A detailed study of this concept is available in the reference [25].

Fig. 3. Proposed power electronics at the grid edge – a self-organizing converter with control intelligence at the edge of the grid.

Fig. 4. Test feeder used to simulate high penetration levels of PINE in a distribution feeder, based on the IEEE-37 test node feeder.

B. Coordinated Protection of HVDC and MVDC Systems in Microgrids

Voltage-source converter (VSC) based high voltage direct-current (HVDC) systems have been well accepted as feasible solutions for grid interconnection and large-scale renewable energy integration over long distances [27]. Recently, the application of medium voltage direct-current (MVDC) systems has increased significantly due to their deployment in microgrids [28]. Protection of HVDC and MVDC systems is challenging since the dc circuit has a lower inductance, a higher rate of change of fault currents, and a faster fault propagation than an ac circuit with an identical rating. Therefore, next-generation protection system for HVDC and MVDC systems are being developed using advanced cyber and physical techniques, such as digital relays, communication links, and dc circuit breakers (DCCBs), to enhance security and resilience of hybrid ac/dc power systems.

Pilot protection schemes, such as those based on wavelet transform and differential current methods, require communication links between relays at both ends of a dc line to compare measured signals at two ends for fault detection [29][30]. Specifically, the wavelet transform method is to detect the transient signals that travel along a dc line with multiple frequencies’ waves moving away from the fault location towards both ends of the line, as shown in Fig. 5. The wavelet transform method can identify the time and frequency characteristics of a fault current travelling wave at two ends and extract their polarities to discriminate the internal faults located on a dc line. The differential method relies on the detection of difference between fault currents (Ia and Ib) that feed into the fault location from two ends of a dc line. With the detection of dc faults, the relays on both ends of the dc line will trigger DCCBs to interrupt fault currents and isolate faults. These detection methods are reliable, but rely heavily on a communication link between the relays at two ends. The communication link can be costly for a long dc line and with a communication delay that cannot be neglected. Alternative protection schemes detect dc faults based on local signals, such as voltages, currents, and their derivations [31]. Although these methods cost less, they require a high sampling frequency and are less reliable since they are easily affected by signal noises and...
There are protection schemes based on the coordination between DCCBs and DCCBs. Currently, the existing DCCB techniques are limited by their response time, voltage rating, and cost. These protection schemes perform a flexible control of converters to limit dc fault currents to reduce the rating and cost of the DCCBs. The corresponding strategies include (1) applying full-bridge modular multilevel converters (MMCs) to block the fault current flowing through IGBTs’ diodes (Fig. 6a) and (2) using half-bridge MMCs to form bypassing circuits using additional thyristors or controlling their own IGBTs (Figs. 6b and 6c) [32][33]. These bypass circuits can convert the dc fault circuit into a balanced ac circuit. As a result, the MMC capacitors stop discharging and the dc fault current is reduced dramatically to enable a successful tripping of the DCCBs with a lower rating.

The protection coordination between dc and ac systems is also significant for hybrid ac/dc power systems because the control and operation of dc systems have significant impacts on traditional protection systems of ac systems. The research work in [34]-[36] proposed a fast and reliable algorithm to identify mis-coordinated relays in an ac system due to an interconnection of the HVDC and determine their appropriate relay settings.

IV. E-MOBILITY AND WIRELESS INFORMATION AND POWER TRANSFER

A. E-Mobility and Charging

Electric vehicles are here and this time they are here to stay. All-electric propulsion systems can be powered by a battery, a fuel cell, or a gasoline powered alternator to form battery electric, fuel cell hybrid, and extended range electric vehicles. The electric propulsion includes a traction inverter and an electric motor. In the fuel cell hybrid case, there is also a need for a voltage regulator to supply constant voltage to the inverter even when the fuel cell output voltage reduces at higher loads. The battery electric vehicle includes either an on-board charger or an off-board charger. Typically, more than 100 kW power will be transferred through the inverters to move the vehicle. Cyber physical security of these components is important to ensure that the right amount of power is produced at the right time. Hijacking the torque command or charging command can result in major damage to the vehicles and to the people riding in them. In addition to these, the sensors on these vehicles must process the right data and output the correct results for the vehicle to function properly without posing danger to anyone. These vehicles will be carrying a lot of energy in the form of batteries, hydrogen, and gasoline which could be volatile if not controlled properly using appropriate sensor data.

There are some semi-autonomous vehicles on the road today with some navigation, at least on the highways. The future promises more of the connected and autonomous vehicles. These vehicles will have all the power electronics mentioned above along with many more sensors and computers requiring additional power [37]. Such vehicles, comprising communication, controls, and computing systems including edge computing at the sensor level there is the potential for more vulnerabilities. Eventually, with the humans out of the loop, for full Level 5 autonomy [38], these systems will be even more critical since there will not be a human driver to take control in case of danger.

Charging systems connect vehicle electronics to the grid systems allowing critical communication between two important infrastructures. With an all-electric transportation system, there will be thousands and eventually millions of these vehicles connected to the grid at any time allowing people trying to gain access to the grid through the vehicle systems or vice versa, which is why both systems should be designed in a secure manner and not necessarily independently but in coordination with each other preventing vulnerabilities [39][40]. With charging power levels going beyond 350 kW for passenger vehicles and beyond 1 MW for commercial vehicles, an interruption could disable vehicles or reduce the charging power which would take them out of service impacting large segments of society. These power levels also indicate much higher energy levels being transferred to the batteries which makes it critical to have secure chargers and battery management systems to avoid any catastrophic failures.

Another charging technology that will allow autonomous vehicles is wireless charging [41], after all, if someone must plug the vehicles in, they cannot be considered completely autonomous. There is also dynamic or in-motion wireless charging which, together with autonomous static charging, potentially allows vehicles to have unlimited range eliminating the range anxiety of electric vehicles [42][43].
potentially allows vehicle to have unlimited range eliminating the range anxiety associated with electric vehicles [42][43]. Experimental evaluation of a 120 kW (Fig. 7a) and a 20 kW (Fig. 7b) static wireless charging system demonstrated a dc-to-dc efficiency of 97% with a 150 mm gap between the transmitter (Fig. 7a) and receiver coils. The feasibility of this system resulted in the team looking into 300 kW static wireless charging systems and 200 kW dynamic wireless charging systems.

An earlier 20-kW static wireless charging system demonstrated on a Rav4 at ORNL's Laboratory's (ORNL's) 120 kW static wireless charging demonstration. (b) (Fig. 7a) and a 20 kW (Fig. 7 b) static wireless charging systems, more consideration needs to be given regarding the electronics is extremely important. While designing these systems, more consideration needs to be given regardless what part of controls and data processing needs to be software or hardware-based.

B. Power and Information Co-transmission

The possibility of massive IoT – involving billions of smart connected objects that monitor structure health, logistics, security, health care, and agriculture – is tantalizing. The main open challenge here lies in the reality of maintenance-free, higher reliability devices, especially from the standpoint of energy sustainability. Interestingly, although radio waves carry both energy and information simultaneously, radiofrequency transmission of these quantities have traditionally been treated separately. Some recent studies have provided experimental evidence for wireless information and power transmission (WPT), in which information and energy flow together through the wireless medium. Note that it is not possible to perform wireless power transfer (WPT) and wireless information transmission (WIT) operations on the same received signal – simultaneously and over the same spectrum [44]-[48]. Transmitting data and power over different spectra – such as using pulse width to overlay information on top of power transfer - or sending two signals over two time slots (not simultaneous) or using two antennas are conceptionally identical for wireless communication and not spectrum efficient. There are two facets to this restriction: first, the WPT operation on the WIT signal destroys the information content of the signal; second, the WIT and WPT have very different power sensitivity (e.g., -10 dBm for energy harvesters versus -60 dBm for information receivers) [44]. These limitations inspired several research efforts on splitting the received signal into two orthogonal parts. The common practical techniques include: Time switching, power splitting and antenna switching [44]. All prior approaches have the disadvantage of interrupted information transmission and low spectrum efficiency. This is logical since up until recently it was assumed that simultaneous reception and transmission on the same frequency, i.e., in-band full-duplex (FD) communication is impossible. Recent works have provided experimental methodologies for full-duplex communication, in which a node can transmit and receive signals at the same time and on the same frequency band [49]-[51]. This research guarantees low latency transmission as required by, among others, delay-sensitive sensor information.

Motivated by the advances in RF-power transfer and FD communication, we believe FD-WIPT (see Fig. 8) is a promising approach to sustainable-power low-latency data transmission IoT. This is very relevant for low-power IoT devices with massive connections such as communication in disaster scenarios. Within this framework, the IoT devices will harvest energy from incident RF signals and transmit a message to the base-station at the same time and on the same frequency. The integration of wireless power and wireless communications receivers brings also new challenges related to self-interference cancellation and RF-power transfer enhancement.

While wireless power and information is typically transmitted using a common electromagnetic (continuous) mechanism, recently, [52][53] has introduced a mechanism where power and data flow is no longer restricted to be continuous. In other words, and as shown in Fig. 9, the power/energy and data can be sent (with or without a waveguide) in discretized form. This, yields added reliability and interestingly, just like data, energy packets can be coded. Further, the signals can be modulated and do not need to be pulsating. Instead, the signals are Boolean in a generalized sense. Further, the form of power transmission can be multi-quadrant. Preliminary results have been provided in [54] and exciting research is ongoing with broad applications [55].

![Fig. 9. A Boolean power and data transfer mechanism.](image-url)
V. COORDINATED CONTROL

Systems where converters are the interfaced between many of the main sources of energy and load centers, have the ability to direct the flow of energy if the control of the converters is appropriately coordinated. This allows for optimizing source operating points for a system cost function and directing load sharing and energy storage usage to meet operational requirements. Perhaps the most common methods of coordination utilized in microgrids are droop based. Droop coordination methods [56]-[59] are robust and are often adjusted via low bandwidth communication links making them relatively insensitive to communication failures or delays. However, adjustments to sharing allocations are slow as compared to fast communication-based methods and bus voltage cannot be stiffly regulated. Higher-bandwidth communication can form the basis of coordinating system control that allows for system wide energy management strategies [60]-[62] as an alternative to droop-based methods when faster and tighter energy flow control is desirable.

A. Multi-Hop Network Based Coordination of Power Electronics

There has been progress in the area of modular converter systems due to continued research and development of the power-electronics-building-block (PEBB) concept [63]. The PEBB concept has driven advancements in highly modularized converter systems with many identical subsystems such as the modular multilevel converter (MMC). In addition, recent developments in SiC power devices are yielding converters with far greater switching frequencies and resulting in an order of magnitude reduction of the time scales as compared to converter systems utilizing conventional Si IGBTs. Faster time scales translate to a need for more capable control systems that is usually being met using FPGA based platforms. Communication and computational capabilities of new FPGA based controllers provides opportunities beyond simply supporting SiC PEBB based converters.

Modules that form the control system for single converters are traditionally co-located within the converter. In a PEBB-based power distribution system, control and measurement modules are spatially distributed. Thus, modules at the application level of each converter control can be networked and furthermore with sufficient communication speed do not even have to be co-located with converter equipment. A study [64] was performed to determine the feasibility of distributing converter application control among the modules within converters and at control layers above individual converter control. The study determined that it is acceptable since application control for converter has a cycle time that is typically in the lower millisecond range [65].

The stability and performance of a system of PEBB modules is affected by the delay between when measurements are taken and when updated references are received from the controller. Since each level of the PEBB control hierarchy is connected in a local network topology, transitioning packets between control levels will also contribute to the delay. Latency serves as a constraint for the overall control system design. As such, both the physical topology of the communication network and the routing algorithm are important considerations for the system design.

Several network topologies were evaluated [66], and some of the candidate topologies are shown in Fig. 10. Fig. 10a shows a simple 1-D bidirectional ring topology, where there is only one minimal-distance path between any two endpoints. The worst-case round-trip path delay is \(\pi \), where \(\pi \) is the number of nodes (where a message must traverse \(\pi/2 \) rings in both directions). In this topology, each module requires only two bidirectional channels. Fig. 10c shows a 2-D torus topology, which offers more than one possible minimum-length paths between any two endpoints that are not horizontally or vertically aligned. The 2-D torus has a worst-case round-trip latency of \(n^{1/2} \) and requires four bidirectional channels per node. Extending further, a 3-D torus would require six channel per node and have a worst-case round-trip latency of \(n^{1/3} \). The 2-D torus was selected as the best compromise of number of communication links and performance.

The proposed multi-hop network topology is widely used for large-scale distributed computing systems to smaller-scale networks-on-chip [67][68]. However, while these networks seek to minimize average-case latency for varying dynamic traffic, a PEBB controller network must guarantee a worst-case latency for regular static traffic. Power electronic control systems consist of multiple control loops and levels or layers of control within a hierarchy. Single hop communication latency in the 0.7 µs range has been achieved [64] which includes all necessary subsystems to implement application level control functions. An additional advantage of mesh networks is multiple re-route paths in the event of a network or control node failure. In the event of a node failure the network can re-route by adding two additional hops resulting in a worst-case additional latency of 1.4 µs. This is acceptable since Application control for converter control systems has a cycle time that is typically in the > 100 µs range [65]. With worst case hop
timing needing less than 1% of the application control cycle time several tens of converters can be coordinated via the 2-D torus PEBB control network.

Increasing communication and computational capabilities of new FPGA based controllers provides a new paradigm where, as opposed to two distinct converters outlined in the pink boxes of Fig. 11, this can be viewed as a single cluster of PEBBs. The cluster with tight synchronization and coordination across the multi-hop network reduces the need for energy-storage-based decoupling at buses and other points in the electrical network. Capacitive storage, for example, provides sufficient energy to maintain voltage at a bus within an acceptable range when converters attached to the bus interact. The capacitive storage must buffer response lags between converter control subsystems. Low latency and tight synchronization of control subsystems enabled by the network reduces response times of systems interacting on a bus and thus the required storage is reduced for the same bus transient limit.

Fig. 11. Cluster of PEBBs coordinated over 2-D torus multi-hop network.

B. Event-Triggered and Encoding based Control of Distributed Power-Electronic Systems

An important question is how the communication-based coordination workload, with the increasing penetration of power electronics in networked power systems (e.g., microgrid, VPP, naval integrated power systems, more electric aircrafts) be ensured notwithstanding the advantages of coordination of such CPSs. Conventional approaches often use periodic data transmission, which typically incur progressively higher latency as the number of power-electronic nodes increase. As such, there is ongoing exploration if a need-based and/or control-centric communication (guided by event- or self-triggering) would be more beneficial [61]-[64], [71]. Preliminary work, as illustrated in Fig. 12 [61], seems to suggest promise by reducing the data rate for communication.

While event-triggering and control-centric communication reduces data rate by carrying out need-based packet exchange, a coding-based approach essentially focuses on the information content of the data. For instance, such an approach may reduce the rate of communication by transmitting a data packet between control nodes when there is new information content or sending only the new information content. Fig. 13 [72] illustrates the result of one such case study. The latter pertains to coordinated control of multiple parallel inverters. The figure shows that if a differential data transmission is adopted, then, the number of inverters that can be coordinated for the same delay are significantly higher thereby boosting the scalability of the coordinated inverter control. As power-electronics penetrates networks at a larger scale, such coding approaches become increasingly relevant.

VI. RELIABILITY IN POWER-ELECTRONIC BASED CYBER-PHYSICAL POWER SYSTEMS

CPS for power have facilitated the integration of physical power networks with embedded computing processes, thereby adding new capabilities. Furthermore, with the aim to decarbonize the energy production process, power electronics is dominating in modern power systems acting as the key enabler in the energy conversion unit to extract
“green” energy from renewable energy sources. By virtue of these increasing demands, the cyber layer was brought in to become the “brain” in handling and coordinating the operation and control of modern power systems, which acts as the “body” (as shown in Fig. 14).

The addition of more sensing, communication, variable power sources and storage under the renewable energy thrust and smart grid initiative will add even higher orders of dimensionality and complexity. This order of complexity, intended to achieve higher levels of efficiency, flexibility, and fault tolerance, can also be a source of higher failures of complex nature that can degrade the reliability. Since most of the literature is focused on reliability indices emerging only from the physical layer [73], it is crucial to assess the failure modes resulting from the cyber-physical interactions in power-electronics-based power CPSs.

As the cyber interdependence keeps growing, new reliability indices from power systems operation perspective need to be developed to account for issues in the cyber layer such as, communication traffic, delay, data packet loss, link failure and cyber security (as shown in Fig. 14). With higher degree of cyber-physical interoperability, cyber failure modes may indirectly trigger events in the physical layer such as, power electronics component level reliability, stability concerns, overloading of converters finally leading to emergency contingencies. An account of the power CPS has been shown in Fig. 15, where large communication delay affects the system performance. In the long run, these high-frequency oscillations will not only degrade the component’s lifetime but will also alter system stability.

Finally, new reliability metrics need to be defined for power electronics based power CPSs to account cyber-physical disturbances and evaluate the failure, availability and lifetime of cyber-physical components [74], specifically for applications such as protection against faults where the omnipresence of both cyber and physical layer is inevitable. Moreover, further research can be carried out to recommend the degree of cyber-physical interoperability to ensure reliability of power electronics based cyber-physical power systems.

VII. ADVANCES IN HARDWARE AND POWER-CONVERTER TOPOLOGIES

A. Power Electronic Converters for Solar Plus Storage Systems

The solar-plus-storage system is a typical configuration for a distributed energy resource (DER) generation system, where a battery energy storage system (BESS) can be integrated with a solar photovoltaic (PV) system to mitigate the irregularities of the PV system and improve system reliability [75]. In a dc-coupled solar plus storage system, both the PV and BESS are connected to a common dc bus to supply energy to a grid-tied inverter or directly to the loads in a microgrid. A bidirectional multi-port dc-dc converter is desirable to achieve power transfer among the PV arrays, BESS, and the common dc bus. Among various solid-state transformer topologies, the triple-active-bridge (TAB) converter [76][77], where three dc-ac converters are coupled through a three-port transformer [78], can enable galvanic isolation and transfer power among three dc ports with less components. Moreover, like its two-port counterpart, i.e., the dual-active-bridge (DAB) converter [79], the TAB converter can operate at the zero-voltage-switching mode to reduce switching losses. Thus, the TAB converter inherently satisfies the needs of the solar plus storage system.

Compared to the conventional system configuration, the TAB converter based solar plus storage configuration enables integration at the converter level, which will provide a faster dynamic response and improve system robustness, as a centralized controller can adjust the power distribution between the PV port and BESS port rather than controlling power through communication between different dc-dc converters [80]. To increase system efficiency and power density, SiC devices have been adopted in the TAB design. Fig. 16 shows the test setup of a 150 kW TAB system developed by University of Arkansas [78] using 1.7 kV SiC power modules.

For residential applications, various power router designs are proposed to provide solar plus storage solutions. For instance, a power router is proposed in [81], which has a PV terminal, a BESS terminal, an isolated dual half-bridge (DHB) converter and a split-phase inverter for load connection. The residential power router (RPR) is controlled by a hierarchical energy management system (EMS) shown in Fig. 17. The secondary control of the EMS can minimize
Fig. 16. The test setup of a 150 kW TAB converter for solar plus storage systems.

Fig. 17. The EMS for the solar plus storage based residential power router.

expenses on residential electrical utilities when grid-connected and maximize the power supply duration when off-grid. To prevent the over-generation at PV terminal in islanded mode, the RPR system can operate with limited power point tracking. In addition, the RPR can provide grid support, e.g., compensate reactive power and phase imbalance.

In addition to the enhanced electrical performance reliability described above, the RPR described as been further enhanced with advanced cybersecurity features that provide enhanced resiliency and availability [82]. This follows a defense-in-depth strategy to enhance the overall cybersecurity of the device and system, but addressing communications, controls, and hardware aspects of the design in Fig. 17. This includes encryption, authentication, and protections that span both hardware and firmware in addition to communications that provide added assurance that solar plus storage systems can remain safely in operation – even in the event of a cyber-attack. These measures address detection and mitigation methods against the attack surface of the power electronics device as a whole – preventing compromise and physical damage. These cyber-hard by design approaches cost relatively little in terms of additional hardware components but provide great benefit for the RPR and grid.

B. Smart Transformer Conversion Module

The current US power network is undergoing revolutionary structural and functional changes with the proliferation of renewable, converter-based distributed energy resources and increased use of active loads. Advancements in digital sensor networks, data analytics and communication technologies add new challenges to power system control, grid visualization, operation, communication bandwidth, physical and cyber security, with a resulting threat to grid resilience and reliability [83]-[86].

One of the most strategic power equipment, in the legacy power network, is the substation transformer. It is important to transition traditional transformers into smart transformers that can perform a variety of advanced grid support functions [80], [87]-[89]. While the concept of smart solid-state transformers (SSTs) is being widely recognized, their respective lifetime and reliability raise serious concerns with power utilities, thus, hampering the replacement of traditional transformers with fully electronic SSTs. It is therefore proposed to introduce smart features in conventional transformers utilizing simple, cost-effective, and easy to install modules is highly desirable [86][88] [89]. These include voltage regulation, voltage and impedance balancing, harmonics isolation, voltage ride through (VRT), blocking dc in ac networks and prevention of the critical grid assets from natural or man-made disturbances, as shown in Fig. 18.

Fig. 18. Enhancement of substation transformer to perform advanced system support

Adding more controllability in a traditional power transformer does provide greater flexibility and mitigation features in power network operation, microgrid forming and mitigation, but it also provides challenges in terms of vulnerabilities in terms of system protection, unintended islanding, reliability and cyber security. Additional requirements in terms of localized self-healing and controllability from local system parameters are essential in moving forward with more advanced power system control and mitigation using AI [83][90] [91].

This power electronics enhanced hybrid transformer concept [86], was evaluated for several applications of these grid support and mitigation functions on a 9-bus power system with [92], as shown in Fig. 19. The HIL simulation results of some of these functions are plotted in Fig. 20. C. Applications of CPSs in Wind Energy Systems

More interest needs to be directed towards the generation stage, especially the renewable energy sources like wind energy, which has developed rapidly on a worldwide scale [93]. Global advancement of wind energy has encompassed deployments in large scale such as offshore, floating, and
Fig. 19. IEEE 9-Bus system depicting hybrid smart transformers with high penetration of intermitted resources and active loads [92].

Fig. 20. Mitigation of transformer saturation due to unwanted DC injection using hybrid smart transformers [92].

airborne wind turbines. Apart from facilitating monitoring and control of wind energy conversion systems (WECS), SCADA systems are also prominently being used for operation and maintenance. Specifically, in the wind turbine level, SCADA systems are used for control system interface and diagnostics [94] along with data collection facilities. These data can further be used for troubleshooting applications, reducing the downtime and improving the reliability and availability of a wind turbine. On the other hand, in the wind farm level, SCADA is typically used for robust security model, verification of grid codes and for configured displays to monitor the generation [95].

Apart from these basic tasks, SCADA is primarily used for condition monitoring (CM) using fault identification techniques to alleviate the operation and maintenance in WECS [96]. CM systems usually deploy high sampling rate sensors, thereby imposing challenges on data communication, computation, and storage within a reasonable cost margin. Nevertheless, it has been shown in [97] that SCADA using a cyber-physical mechanism has managed to improve the fault diagnosis over conventional physical methods. A general trend of reducing the cost and computational as well as communication burden can be to extract the features during critical events using event-triggering methods [98].

Modeling also becomes a major challenge by integrating heterogeneous wind turbine models into the cyber layer. Hence, different aspects need to be considered for a detailed compositional CPS modeling hierarchy [99]. It is also crucial to assemble the abstract CPS models and information flow graphs from the sensor networks into the physical models of mechanical and electrical parts inside wind turbines. Recent innovations in the sensor network, such as the internet of things (IoT) has facilitated interactive sensing, communication, and control, which could serve as an upgradation to the next-generation WECS. However, the abovementioned advancements also limit its operation as it increases the security concerns [100], thereby mandating a security framework for cyber-physical WECS. Hence, further research efforts need to consider these aspects for a cost-effective, reliable, and resilient WECS.

VIII. TRANSACTIVE SMART HIGH-SPEED RAILWAY GRID

One of the application areas where power electronics has made a tangible societal impact world-wide is high-speed electrical trains. With the burgeoning population, the need for electrical trains and their faster travel is increasing. This also translates to increasing energy requirements. However, as the demand of such locomotive power increases, so arises the challenges associated with operating such infrastructures with manageable cost. This is especially important since an electrical train is a unique spatio-temporal load [101][102], as captured in Fig. 21 for the overall energy CPS.

Currently, the cost of electricity usage for a high-speed electrical train is typically determined by solving an energy-minimization-based optimization problem. However, recently, guided by [102] new approaches [103][104] based on transactive optimization, have been explored that have the potential to appreciably reduce the cost of electricity consumption in such high-speed trains. The transaction is essentially between the electrical train and the grid. In one such approach, instead of minimizing only the energy consumption, the focus, instead, is on minimizing the weighted product of unit cost of electricity and energy demand (while satisfying the time-scheduling constraints) recognizing the spatio-temporal navigation of a high-speed electrical train via plurality of geographical regions at different instances of time. As illustrated in Fig. 22, the new approach leverages the instantaneous velocity profile of the train to vary power consumption while ensuring that the average velocity satisfies the scheduling constraint. In another approach, the transaction stretches beyond the electrical train and the grid to include other real-time loads and outlines an innovative concept of demand-shifting based transactive optimization to further reduce the cost of electricity usage.

These preliminary works have been conducted using primarily a centralized approach. With the advancements of power electronics and intelligent microelectronics, such transactive control can be explored at the power-converter level using coordinated CPS approach by further incorporating dispatchable and non-dispatchable energy sources and extending control objectives to achieve spatio-temporal multi-scale optimization.
power system (SPS) in real-time (RT) environments. These RT environments are intended to provide system relevant characteristics that capture the physical-level (electrical, mechanical, and thermal-fluid) and the cyber-levels (computer network and computational resources). Fig. 23 illustrates some requirements in terms of hardware and software simulation solutions. The simulation capability in Fig. 23 is based on developments of the controls evaluation framework (CEF) [105]-[107]. For the physical system, the electrical and mechanical components are simulated using hardware and application-specific tools; and support interfacing controls and power devices in hardware-in-the-loop (HIL) implementations. The HIL implementations are mainly realized using interfaces that support control HIL (CHIL) and power HIL (PHIL). Similarly, the cyber-system is modeled using specialized hardware and software tools that support the representation of complex communication network characteristics that exist in deployed communication networks. Such characteristics include packet delays, packet drops, and bandwidth limitations. In addition, the real-time simulation environment is designed to support the integration of external devices, which can be proprietary external controllers or generic physical network devices such as wired/wireless routers, switches, or hubs.

IX. REAL-TIME SIMULATION OF SHIPBOARD POWER SYSTEMS

A. Overview

There is a pressing need for frameworks that provide the ability to analyze and evaluate cyber-physical shipboard
B. Case Study

In this section, a case study is described for a notional cyber-physical SPS. In this case study, a distributed power and energy management system is deployed in a 4-zone MVDC ship power system (Fig. 23) [107]. The physical system, i.e., the electrical and mechanical properties of the SPS, are modeled and simulated on a RT Simulator (RTS) while sensor data coming from the devices modeled inside the RTS are sent, through fiber optic and an FPGA, to the communication infrastructure connected to the respective external controllers. The power system modeled is a notional 12 kV/100 MW class MVDC distribution system with multiple energy storage modules (ESM) with maximum capacities of 1 GJ and a charging/discharging rated power of 5 MW and 10 MW, respectively. The power system also has multiple loads modeled as motors and pulse loads that try to replicate the operation of an SPS under different scenarios.

Eventually, the communication network infrastructure of the SPS will be modeled in a high-performance server running the Common Open Research Emulator (CORE) to achieve RT performance [108]. To explore this approach, an Ethernet switch was modeled in CORE for the example shown here. Controllers, running the distributed management system, are connected through Network Interface Cards (NIC) and mapped to virtual nodes inside the emulated environment. The controllers communicate through a virtual Ethernet switch using DDS and TCP/IP communication protocols.

Fig. 24 shows the results of two scenarios wherein each scenario five energy storage modules are controlled in a distributed fashion and are designed to maintain an 80% state-of-charge (SoC) consensus value but diverge during operation of pulse loads at \(t = 50 \) s. The differences in the controllers’ responses are shown when 100 ms packet delays are introduced into the communication network links connecting the ESM controllers. The consensus of the distributed algorithm is heavily affected since multiple SoC measurements present higher oscillations before reaching consensus.

![SoC graphs of distributed controllers during case study](image)

Fig. 24. SoC graphs of distributed controllers during case study: (a) (ESM1-ESM1d) is the scenario where no delays are introduced and (b) (ESM1d-ESM5d) is the scenario where 100 ms delays are introduced into the emulated communication network.

X. Conclusions

This review covers a broad range of topics involving the confluence of power electronics and CPSs encompassing plurality of emerging applications. It provides an overview on multiple research issues and challenges in these application areas and the solutions that are being pursued.

To begin with, the issue of vulnerability of CPSs based on power-electronic converters to cybernetic technologies and the evolving need for resilience to such vulnerabilities have been introduced. On a similar note, reliability of power-electronic systems that form the backbone of energy CPSs needs careful consideration and incorporation of emerging data-centric methodologies, as have been captured in this paper.

Subsequently, a discussion on self-organizing power-electronic converter with control intelligence at the edge of grid is presented, which can improve the system performance for large-scale renewable energy integration. Following this, protection of MVDC/HVDC systems is discussed with practical considerations on the power-circuit topologies such as modular multilevel converters.

Challenges and implementation approaches in e-mobility such as fast charging wireless are highlighted next. On a related note, co-transmission of power and information in wireless (and waveguided) medium are outlined, which may have a significant impact on mobile and stationary IoT technologies.

Coordinated control is an important feature in modularized-converter-based CPSs. In this context, a multi-hop-network-based coordination scheme for distributed and fast-switching converters using a two-dimensional torus topology is discussed with an eye on latency reduction. Regarding the latter, two complementary methodologies, based on coordinated control guided by event triggering (i.e., need-based communication) and encoding (information- and not data-centric communication) are outlined next.

The other important aspect in energy CPS is the topological advances that form the physical layer. Triple-active-bridge converter topology and smart transformers for systems such as solar plus storage are outlined.

Finally, energy CPS involving smart spatio-temporal high-speed railway grid (with focus on transactive optimization for cost of electricity usage reduction) and control for novel and next-generation electrical ships with focus on RT simulation of a complex shipboard power systems are outlined.

The wide range of research topics presented in this review paper are expected to provide an overview of ongoing research in power-electronics-based energy/power CPSs and help the researchers working in this area with the eventual aim of energy sustainability and smart power solutions.

ACKNOWLEDGEMENT

The information, data, or work presented herein was funded in part by the Agencies/Organizations U.S. Office of Naval Research, U.S. Department of Energy, U.S. National Science Foundation, Savannah River National Laboratory (SRNL) under Award Numbers N00014-16-1-2956,
N00014-17-1-2695, N00014-16-1-2956, EE0008349, EE0009026, DE-OE0000779, M615000478, 1239118, 0000492006. The views and opinions of authors expressed herein do not necessarily state or reflect those of the above-mentioned agencies/organizations thereof.

REFERENCES

JESTPE Sp. Issue on Sustainable Energy through Power-Electronic Innovations in Physical and Cyber Systems, 2020

Chao Shen, Wei-Chiang Li, and Tsung-Hui Chang, “Simultaneous information and energy transfer: A two-user [miso,” in 2012 IEEE Global Communications Conference(GLOBECOM).

S. Zhao, Z. Wang, J. Umuhoza, A. Mantooth, Y. Zhao and C. Farnell, “Distributed power quality enhancement using residential power routers,” 2018 IEEE Applied Power Electronics Conference and
Exposition (APEC), San Antonio, TX, 2018, pp. 513-520, doi: 10.1109/APEC.2018.8341060.

