Chapter 2: Entropy and Mutual Information

Chapter 2 outline

• Definitions
• Entropy
• Joint entropy, conditional entropy
• Relative entropy, mutual information
• Chain rules
• Jensen’s inequality
• Log-sum inequality
• Data processing inequality
• Fano’s inequality
Definitions

A discrete random variable X takes on values x from the discrete alphabet \mathcal{X}.

The probability mass function (pmf) is described by

$$p_X(x) = p(x) = \Pr\{X = x\}, \text{ for } x \in \mathcal{X}.$$

The joint pmf of two random variables X and Y taking on values in alphabets \mathcal{X} and \mathcal{Y} respectively is described by

$$p_{X,Y}(x, y) = p(x, y) = \Pr\{X = x, Y = y\}, \text{ for } x, y \in \mathcal{X} \times \mathcal{Y}.$$

If $p_X(X = x) > 0$, the conditional probability that the outcome $Y = y$ given that $X = x$ is defined as

$$p_{Y|X}(y|X = x) = \frac{p_{X,Y}(x, y)}{p_X(x)}.$$
Definitions

The events $X = x$ and $Y = y$ are statistically independent if $p(x, y) = p(x)p(y)$.

The random variables X and Y defined over the alphabets \mathcal{X} and \mathcal{Y}, resp. are statistically independent if $p_{X,Y}(x, y) = p_X(x)p_Y(y), \forall (x, y) \in \mathcal{X} \times \mathcal{Y}$.

The variables $X_1, X_2, \cdots X_N$ are called independent if for all $(x_1, x_2, \cdots, x_N) \in \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \mathcal{X}_N$ we have

$$p(x_1, x_2, \cdots x_N) = \prod_{i=1}^{N} p_{X_i}(x_i).$$

They are furthermore called identically distributed if all variables X_i have the same distribution $p_X(x)$.

Entropy

- Intuitive notions?

- 2 ways of defining entropy of a random variable:
 - axiomatic definition (want a measure with certain properties...)
 - just define and then justify definition by showing it arises as answer to a number of natural questions

Definition: The entropy $H(X)$ of a discrete random variable X with pmf $p_X(x)$ is given by

$$H(X) = -\sum_x p_X(x) \log p_X(x) = -E_{p_X(x)}[\log p_X(X)].$$
Order these in terms of entropy
Entropy examples 1

- What’s the entropy of a uniform discrete random variable taking on K values?

- What’s the entropy of a random variable with

 \[X = [♠, ♦, ♣, ♦], \quad p_X = [1/2; 1/4; 1/8; 1/8] \]

- What’s the entropy of a deterministic random variable?

Entropy: example 2

Example 2.12. The entropy of a randomly selected letter in an English document is about 4.11 bits, assuming its probability is as given in table 2.9. We obtain this number by averaging \(\log 1/p_i \) (shown in the fourth column) under the probability distribution \(p_i \) (shown in the third column).
Entropy: example 3

- Bernoulli random variable takes on heads (0) with probability p and tails with probability 1-p. Its entropy is defined as

\[H(p) := -p \log_2(p) - (1 - p) \log_2(1 - p) \]

Suppose that we wish to determine the value of \(X \) with the minimum number of binary questions. An efficient first question is “Is \(X = a \)?” This splits the probability in half. If the answer to the first question is no, the second question can be “Is \(X = b \)?” The third question can be “Is \(X = c \)?” The resulting expected number of binary questions required is 1.75. This turns out to be the minimum expected number of binary questions required to determine the value of \(X \). In Chapter 5 we show that the minimum expected number of binary questions required to determine \(X \) lies between \(H(X) \) and \(H(X) + 1 \).

2.2 JOINT ENTROPY AND CONDITIONAL ENTROPY

We defined the entropy of a single random variable in Section 2.1. We now extend the definition to a pair of random variables. There is nothing really new in this definition because \((X, Y)\) can be considered to be a single vector-valued random variable.

Definition

The joint entropy \(H(X, Y) \) of a pair of discrete random variables \((X, Y)\) with a joint distribution \(p(x, y) \) is defined as

\[H(X, Y) = \sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(x, y), \quad (2.8) \]

Entropy

The entropy \(H(X) = -\sum_x p(x) \log p(x) \) has the following properties:

- \(H(X) \geq 0 \), entropy is always non-negative. \(H(X) = 0 \) iff \(X \) is deterministic (0 log(0) = 0).
- \(H(X) \leq \log(|X|) \). \(H(X) = \log(|X|) \) iff \(X \) has uniform distribution over \(X \).
- Since \(H_b(X) = \log_b(a) H_a(X) \), we don’t need to specify the base of the logarithm (bits vs. nat).

Moving on to multiple RVs
Joint entropy and conditional entropy

Definition: Joint entropy of a pair of two discrete random variables X and Y is:

$$H(X,Y) := -E_{p(x,y)}[\log p(X,Y)]$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

Definition: The conditional entropy of Y given a random variable X (average over X) is:

$$H(Y|X) := E_{p(x)}[H(Y|X = x)] = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

$$= -E_{p(x)}E_{p(y|x)}[\log p(Y|X)]$$

$$= -E_{p(x,y)}[\log p(Y|X)] = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x)$$

Note: $H(X|Y) \neq H(Y|X)$.

Joint entropy and conditional entropy

- Natural definitions, since....

Theorem: Chain rule

$$H(X,Y) = H(X) + H(Y|X)$$

Corollary:

$$H(X,Y|Z) = H(X|Z) + H(Y|X,Z)$$
Joint/conditional entropy examples

\[p(x, y) \begin{array}{c|c|c} \hline x = 0 & y = 0 & y = 1 \\ \hline \frac{1}{2} & \frac{1}{4} \\ \hline x = 1 & 0 & \frac{1}{4} \end{array} \]

\[\begin{align*}
H(X,Y) &= \\
H(X|Y) &= \\
H(Y|X) &= \\
H(X) &= \\
H(Y) &=
\end{align*} \]

Entropy is central because...

(A) entropy is the measure of **average uncertainty** in the random variable

(B) entropy is the **average number of bits** needed to describe the random variable

(C) entropy is a lower bound on the **average length of the shortest description** of the random variable

(D) entropy is measured in bits?

(E) \[H(X) = - \sum_x p(x) \log_2(p(x)) \]

(F) entropy of a deterministic value is 0
Mutual information

- Entropy $H(X)$ is the uncertainty ("self-information") of a single random variable.
- Conditional entropy $H(X|Y)$ is the entropy of one random variable conditional upon knowledge of another.
- The average amount of decrease of the randomness of X by observing Y is the average information that Y gives us about X.

Definition: The mutual information $I(X;Y)$ between the random variables X and Y is given by

$$I(X;Y) = H(X) - H(X|Y)$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)}$$

$$= E_{p(x,y)} \left[\log_2 \frac{p(X,Y)}{p(X)p(Y)} \right]$$

At the heart of information theory because...

- Information channel capacity:

$$C = \max_{p(x)} I(X;Y)$$

- Operational channel capacity:

Highest rate (bits/channel use) that can communicate at reliably

- Channel coding theorem says: information capacity = operational capacity
Mutual information example

<table>
<thead>
<tr>
<th>(p(x, y))</th>
<th>(y = 0)</th>
<th>(y = 1)</th>
<th>(X) or (Y)</th>
<th>(p(x))</th>
<th>(p(y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0)</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>3/4</td>
<td>1/2</td>
</tr>
<tr>
<td>(x = 1)</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1/4</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Divergence (relative entropy, K-L distance)

Definition: Relative entropy, divergence or Kullback-Leibler distance between two distributions, \(P \) and \(Q \), on the same alphabet, is

\[
D(p \parallel q) := E_p \left[\log \frac{p(x)}{q(x)} \right] = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
\]

(Note: we use the convention \(0 \log 0 = 0 \) and \(0 \log \frac{0}{q} = p \log \frac{p}{0} = \infty \).)

- \(D(p \parallel q) \) is in a sense a measure of the “distance” between the two distributions.
- If \(P = Q \) then \(D(p \parallel q) = 0 \).
- Note \(D(p \parallel q) \) is not a true distance.

\[
D(\blacklozenge, \blacklozenge) = 0.2075 \quad D(\blacklozenge, \lozenge) = 0.1887
\]
K-L divergence example

- $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$
- $P = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6]$
- $Q = [1/10, 1/10, 1/10, 1/10, 1/10, 1/2]$
- $D(p \parallel q) = ?$ and $D(q \parallel p) = ?$

Mutual information as divergence

Definition: The mutual information $I(X; Y)$ between the random variables X and Y is given by

$$I(X; Y) = H(X) - H(X|Y)$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)}$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \left[\log_2 \frac{p(x, y)}{p(x)p(y)} \right]$$

- Can we express mutual information in terms of the K-L divergence?

$$I(X; Y) = D(p(x, y) \parallel p(x)p(y))$$
Mutual information and entropy

Theorem: Relationship between mutual information and entropy.

\[I(X; Y) = H(X) - H(X|Y) \]

\[I(X; Y) = H(Y) - H(Y|X) \]

\[I(X; Y) = H(X) + H(Y) - H(X, Y) \]

\[I(X; Y) = I(Y; X) \quad \text{(symmetry)} \]

\[I(X; X) = H(X) \quad \text{("self-information")} \]

"Two’s company, three’s a crowd"

Chain rule for entropy

Theorem: (Chain rule for entropy): \((X_1, X_2, ..., X_n) \sim p(x_1, x_2, ..., x_n)\)

\[H(X_1, X_2, ..., X_n) = \sum_{i=1}^{n} H(X_i|X_{i-1}, ..., X_1) \]

\[H(X_1, X_2, X_3) = H(X_1) + H(X_2) + H(X_3) - H(X_1, X_2) - H(X_1, X_3) - H(X_2, X_3) + H(X_1, X_2, X_3) \]
Conditional mutual information

Definition: The conditional mutual information between X and Y given Z is

$$I(X; Y | Z) := H(X | Z) - H(X | Y, Z)$$

$$= E_{p(x, y, z)} \log \frac{p(X, Y | Z)}{p(X | Z) p(Y | Z)}$$

Chain rule for mutual information

Theorem: (Chain rule for mutual information)

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^{n} I(X_i; Y | X_{i-1}, X_{i-2}, ..., X_1)$$

Chain rule for relative entropy in book pg. 24
What is the grey region?

Another disclaimer....
Convex and concave functions

- A **convex function** f on an interval $[a, b]$ is one for which every chord lies (on or above) the function on that interval.

 \[f(\lambda u + (1 - \lambda)v) \leq \lambda f(u) + (1 - \lambda)f(v), \quad \forall u, v \in [a, b], \ 0 < \lambda < 1 \]

- A function f is **concave** if $-f$ is convex.

Theorem: If the function f has a second derivative that is non-negative (positive) over an interval, the function is convex (strictly convex) over that interval.
Jensen’s inequality

Theorem: (Jensen’s inequality) If f is convex, then

$$E[f(X)] \geq f(E[X]).$$

If f is strictly convex, the equality implies $X = E[X]$ with probability 1.

Jensen’s inequality consequences

- **Theorem:** (Information inequality) $D(p \parallel q) \geq 0$, with equality iff $p = q$.
- **Corollary:** (Nonnegativity of mutual information) $I(X; Y) \geq 0$ with equality iff X and Y are independent.
- **Theorem:** (Conditioning reduces entropy) $H(X|Y) \leq H(X)$ with equality iff X and Y are independent.
- **Theorem:** $H(X) \leq \log |\mathcal{X}|$ with equality iff X has a uniform distribution over \mathcal{X}.
- **Theorem:** (Independence bound on entropy) $H(X_1, X_2, \ldots, X_n) \leq \sum_{i=1}^{n} H(X_i)$ with equality iff X_i are independent.
Log-sum inequality

Theorem: (Log sum inequality) For nonnegative a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n,

$$
\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \geq \left(\sum_{i=1}^{n} a_i \right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}
$$

with equality iff $a_i/b_i = \text{const}$.

Convention: $0 \log 0 = 0$, $a \log \frac{a}{0} = \infty$ if $a > 0$ and $0 \log \frac{0}{0} = 0$.

Log-sum inequality consequences

- **Theorem:** (Convexity of relative entropy) $D(p \parallel q)$ is convex in the pair (p, q), so that for pmf’s (p_1, q_1) and (p_2, q_2), we have for all $0 \leq \lambda \leq 1$:

$$
D(\lambda p_1 + (1 - \lambda)p_2 \parallel \lambda q_1 + (1 - \lambda)q_2) \\
\leq \lambda D(p_1 \parallel q_1) + (1 - \lambda)D(p_2 \parallel q_2)
$$

- **Theorem:** Concavity of entropy For $X \sim p(x)$, we have that

$$
H(p) := H_p(X) \text{ is a concave function of } p(x).
$$

- **Theorem:** (Concavity of the mutual information in $p(x)$) Let $(X, Y) \sim p(x, y) = p(x)p(y|x)$. Then, $I(X; Y)$ is a concave function of $p(x)$ for fixed $p(y|x)$.

- **Theorem:** (Convexity of the mutual information in $p(y|x)$) Let $(X, Y) \sim p(x, y) = p(x)p(y|x)$. Then, $I(X; Y)$ is a convex function of $p(y|x)$ for fixed $p(x)$.
Markov chains

Definition: X, Y, Z form a Markov chain in that order (X → Y → Z) iff

\[p(x, y, z) = p(x)p(y|x)p(z|y) \equiv p(z|y, x) = p(z|y) \]

- X → Y → Z iff X and Z are conditionally independent given Y
- X → Y → Z ⇒ Z → Y → X. Thus, we can write X ↔ Y ↔ Z.

Data-processing inequality

Theorem: (Data-processing inequality) If X → Y → Z, then \(I(X; Y) \geq I(X; Z) \), with equality iff \(I(X; Y|Z) = 0 \).

Corollary: If Z = g(Y), then \(I(X; Y) \geq I(X; g(Y)) \).

Corollary: If X → Y → Z, then I(X; Y) ≥ I(X; Y|Z).
If X → Y → Z, then I(X; Y) ≥ I(X; Y|Z).
Markov chain questions

If $X \rightarrow Y \rightarrow Z$, then $I(X; Y) \geq I(X; Y|Z)$.

What if X, Y, Z do not form a Markov chain, can $I(X; Y|Z) \geq I(X; Y)$?

If $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5 \rightarrow X_6$, then Mutual Information increases as you get closer together:

$$I(X_1; X_2) \geq I(X_1; X_4) \geq I(X_1; X_5) \geq I(X_1; X_6).$$

Consequences on sufficient statistics

- Consider a family of probability distributions $\{f_\theta(x)\}$ indexed by θ. If $X \sim f(x | \theta)$ for fixed θ and $T(X)$ is any statistic (i.e., function of the sample X), then we have
 $$\theta \rightarrow X \rightarrow T(X).$$

- The data processing inequality in turn implies
 $$I(\theta; X) \geq I(\theta; T(X))$$
 for any distribution on θ.

- Is it possible to choose a statistic that preserves all of the information in X about θ?
Consequences on sufficient statistics

- Consider a family of probability distributions \(\{f_\theta(x)\} \) indexed by \(\theta \).
 If \(X \sim f(\theta \mid \theta) \) for fixed \(\theta \) and \(T(X) \) is any statistic (i.e., function of the sample \(X \)), then we have
 \[\theta \rightarrow X \rightarrow T(X) \]
- The data processing inequality in turn implies
 \[I(\theta; X) \geq I(\theta; T(X)) \]
 for any distribution on \(\theta \).
- Is it possible to choose a statistic that preserves all of the information in \(X \) about \(\theta \)?

Definition: Sufficient Statistic A function \(T(X) \) is said to be a sufficient statistic relative to the family \(\{f_\theta(x)\} \) if the conditional distribution of \(X \), given \(T(X) = t \), is independent of \(\theta \) for any distribution on \(\theta \) (Fisher-Neyman):

\[
f_\theta(x) = f(x \mid t) f_\theta(t) \quad \Rightarrow \quad \theta \rightarrow T(X) \rightarrow X \quad \Rightarrow \quad I(\theta; T(X)) \geq I(\theta; X)
\]

Hence, \(I(\theta; X) = I(\theta; T(X)) \) for a sufficient statistic.

Example of a sufficient statistic

- If \(X_1, \ldots, X_n \) are independent Bernoulli-distributed random variables with expected value \(p \), then the sum \(T(X) = \sum_{i=1}^{n} X_i \) is a sufficient statistic for \(p \).
- Proof: The joint probability distribution
 \[
p(x_1, \ldots, x_n) = p^{T(x)} (1 - p)^{n-T(x)}
\]
 which satisfies the factorization criterion, with \(f(x \mid t) = 1 \) being just a constant.
- Note that the unknown parameter \(p \) interacts with the data \(X \) only via the statistic \(T(X) \).
Fano’s inequality

Theorem: Fano’s inequality
For any estimator $\hat{X} : X \rightarrow Y \rightarrow \hat{X}$, with $P_e = \Pr\{X \neq \hat{X}\}$, we have

$$H(P_e) + P_e \log |\mathcal{X}| \geq H(X|\hat{X}) \geq H(X|Y).$$

This implies $1 + P_e \log |\mathcal{X}| \geq H(X|Y)$ or $P_e \geq \frac{H(X|Y) - 1}{\log |\mathcal{X}|}$.

- Fano’s inequality says that the probability of error cannot be too small if $H(X|Y)$ is large i.e., correct estimation only happens when the residual randomness of X is small after the observation of Y.

Fano’s inequality consequences

- Corollary: Let $p = \Pr\{X \neq Y\}$. Then,

$$H(p) + p \log |\mathcal{X}| \geq H(X|Y).$$

- Corollary: Let $P_e = \Pr\{X \neq \hat{X}\}$, and constrain $\hat{X} : Y \rightarrow \mathcal{X}$; then

$$H(P_e) + P_e \log(|\mathcal{X}| - 1) \geq H(X|Y).$$

- Fano’s bound is a loose bound, but sufficient for many cases of interest (P_e is small and $|\mathcal{X}|$ is quite large).

- Suppose no observation Y so that X must simply be guessed, and order $X \in \{1, 2, \ldots, m\}$ such that $p_1 \geq p_2 \geq \cdots \geq p_m$. Then $\hat{X} = 1$ is the optimal estimate of X, with $P_e = 1 - p_1$, and Fano’s inequality becomes

$$H(P_e) + P_e \log(m - 1) \geq H(X).$$

The pmf $(p_1, p_2, \ldots, p_m) = \left(1 - P_e, \frac{P_e}{m-1}, \ldots, \frac{P_e}{m-1}\right)$ achieves this bound with equality.